Vision-Language Models as a Source of Rewards
- URL: http://arxiv.org/abs/2312.09187v3
- Date: Fri, 12 Jul 2024 21:14:32 GMT
- Title: Vision-Language Models as a Source of Rewards
- Authors: Kate Baumli, Satinder Baveja, Feryal Behbahani, Harris Chan, Gheorghe Comanici, Sebastian Flennerhag, Maxime Gazeau, Kristian Holsheimer, Dan Horgan, Michael Laskin, Clare Lyle, Hussain Masoom, Kay McKinney, Volodymyr Mnih, Alexander Neitz, Dmitry Nikulin, Fabio Pardo, Jack Parker-Holder, John Quan, Tim Rocktäschel, Himanshu Sahni, Tom Schaul, Yannick Schroecker, Stephen Spencer, Richie Steigerwald, Luyu Wang, Lei Zhang,
- Abstract summary: We investigate the feasibility of using off-the-shelf vision-language models, or VLMs, as sources of rewards for reinforcement learning agents.
We show how rewards for visual achievement of a variety of language goals can be derived from the CLIP family of models, and used to train RL agents that can achieve a variety of language goals.
- Score: 68.52824755339806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building generalist agents that can accomplish many goals in rich open-ended environments is one of the research frontiers for reinforcement learning. A key limiting factor for building generalist agents with RL has been the need for a large number of reward functions for achieving different goals. We investigate the feasibility of using off-the-shelf vision-language models, or VLMs, as sources of rewards for reinforcement learning agents. We show how rewards for visual achievement of a variety of language goals can be derived from the CLIP family of models, and used to train RL agents that can achieve a variety of language goals. We showcase this approach in two distinct visual domains and present a scaling trend showing how larger VLMs lead to more accurate rewards for visual goal achievement, which in turn produces more capable RL agents.
Related papers
- Visual Grounding for Object-Level Generalization in Reinforcement Learning [35.39214541324909]
Generalization is a pivotal challenge for agents following natural language instructions.
We leverage a vision-language model (VLM) for visual grounding and transfer its vision-language knowledge into reinforcement learning.
We show that our intrinsic reward significantly improves performance on challenging skill learning.
arXiv Detail & Related papers (2024-08-04T06:34:24Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - OCALM: Object-Centric Assessment with Language Models [33.10137796492542]
We propose Object-Centric Assessment with Language Models (OCALM) to derive inherently interpretable reward functions for reinforcement learning agents.
OCALM uses the extensive world-knowledge of language models to derive reward functions focused on relational concepts.
arXiv Detail & Related papers (2024-06-24T15:57:48Z) - World Models with Hints of Large Language Models for Goal Achieving [56.91610333715712]
Reinforcement learning struggles in the face of long-horizon tasks and sparse goals.
Inspired by human cognition, we propose a new multi-modal model-based RL approach named Dreaming with Large Language Models (M).DLL.M integrates the proposed hinting subgoals into the model rollouts to encourage goal discovery and reaching in challenging tasks.
arXiv Detail & Related papers (2024-06-11T15:49:08Z) - RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback [24.759613248409167]
Reward engineering has long been a challenge in Reinforcement Learning research.
We propose RL-VLM-F, a method that automatically generates reward functions for agents to learn new tasks.
We demonstrate that RL-VLM-F successfully produces effective rewards and policies across various domains.
arXiv Detail & Related papers (2024-02-06T04:06:06Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
We design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters.
This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks.
It has powerful visual capabilities and can be a good alternative to the ViT-22B.
arXiv Detail & Related papers (2023-12-21T18:59:31Z) - Large Language Models are Visual Reasoning Coordinators [144.67558375045755]
We propose a novel paradigm that coordinates multiple vision-language models for visual reasoning.
We show that our instruction tuning variant, Cola-FT, achieves state-of-the-art performance on visual question answering.
We also show that our in-context learning variant, Cola-Zero, exhibits competitive performance in zero and few-shot settings.
arXiv Detail & Related papers (2023-10-23T17:59:31Z) - Augmenting Autotelic Agents with Large Language Models [24.16977502082188]
We introduce a language model augmented autotelic agent (LMA3)
LMA3 supports the representation, generation and learning of diverse, abstract, human-relevant goals.
We show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.
arXiv Detail & Related papers (2023-05-21T15:42:41Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.