One RL to See Them All: Visual Triple Unified Reinforcement Learning
- URL: http://arxiv.org/abs/2505.18129v2
- Date: Sat, 31 May 2025 12:52:01 GMT
- Title: One RL to See Them All: Visual Triple Unified Reinforcement Learning
- Authors: Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao Dai, Pengfei Liu, Junjie Yan,
- Abstract summary: We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables visual reasoning and perception tasks within a single training pipeline.<n>V-Triune comprises triple complementary components: Sample-Level Datashelf (to unify diverse task inputs), Verifier-Level Reward (to deliver custom rewards via specialized verifiers).<n>We introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune.
- Score: 92.90120580989839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
Related papers
- WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning [17.459985667824807]
Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise.<n>In this paper, we show how to achieve the general-purpose visual-language reasoning through reinforcement learning.
arXiv Detail & Related papers (2025-06-09T16:20:54Z) - Unveiling the Compositional Ability Gap in Vision-Language Reasoning Model [39.58344147240552]
We investigate whether large vision-language models (VLMs) can compose capabilities across modalities or tasks under out-of-distribution conditions.<n>Our findings shed light on the current limitations of RL-based reasoning VLM training and provide actionable insights toward building models that reason compositionally across modalities and tasks.
arXiv Detail & Related papers (2025-05-26T01:42:38Z) - VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
Recently, DeepSeek R1 has shown that reinforcement learning can substantially improve the reasoning capabilities of Large Language Models (LLMs)<n>We investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs)<n>We develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks.
arXiv Detail & Related papers (2025-04-10T10:05:15Z) - Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs [73.74375912785689]
This paper proposes unified training strategies for speech recognition systems.
We demonstrate that training a single model for all three tasks enhances VSR and AVSR performance.
We also introduce a greedy pseudo-labelling approach to more effectively leverage unlabelled samples.
arXiv Detail & Related papers (2024-11-04T16:46:53Z) - Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
We propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost.
Our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks.
arXiv Detail & Related papers (2024-03-14T16:47:25Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
We propose a representation learning framework called X-Learner.
X-Learner learns the universal feature of multiple vision tasks supervised by various sources.
X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs.
arXiv Detail & Related papers (2022-03-16T17:23:26Z) - VRL3: A Data-Driven Framework for Visual Deep Reinforcement Learning [14.869611817084015]
We propose VRL3, a data-driven framework for solving visual deep reinforcement learning (DRL) tasks.
Our framework has three stages: in stage 1, we leverage non-RL datasets to learn task-agnostic visual representations; in stage 2, we use offline RL data; in stage 3, we fine-tune the agent with online RL.
On a set of challenging hand manipulation tasks, VRL3 achieves an average of 780% better sample efficiency.
arXiv Detail & Related papers (2022-02-17T09:51:32Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.