Quantum Foundations as a Guide for Refining Particle Theories
- URL: http://arxiv.org/abs/2312.09396v1
- Date: Thu, 14 Dec 2023 23:17:54 GMT
- Title: Quantum Foundations as a Guide for Refining Particle Theories
- Authors: Gerard t Hooft
- Abstract summary: All quantum field theories describe interacting bosonic elementary particles.
We indicate that introducing interactions still leads to classical theories that can be compared with the quantum theories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All quantum field theories that describe interacting bosonic elementary
particles, share the feature that the zeroth order perturbation expansion
describes non-interacting harmonic oscillators. This is explained in the paper.
We then indicate that introducing interactions still leads to classical
theories that can be compared with the quantum theories, but only if we
terminate the expansion somewhere. `Quantum effects' typically occur when some
of the classical variables fluctuate too rapidly to allow a conventional
description, so that these are described exclusively in terms of their energy
eigen modes; these do not commute with the standard classical variables.
Perturbation expansions are not fundamentally required in classical theories,
and this is why classical theories are more precisely defined than the quantum
theories. Since the expansion parameters involve the fundamental constants of
nature, such as the finestructure constant, we suggest that research in these
classical models may lead to new clues concerning the origin of these
constants.
Related papers
- Quantum gravity with dynamical wave-function collapse via a classical
scalar field [0.0]
In hybrid classical-quantum theories, the dynamics of the classical system induce classicality of the quantum system.
This work introduces a classical-quantum model whereby quantum gravity interacts with a classical scalar field.
arXiv Detail & Related papers (2024-02-26T21:07:05Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - Quantum Darwinism and the spreading of classical information in
non-classical theories [0.0]
Quantum Darwinism posits that the emergence of a classical reality relies on the spreading of classical information from a quantum system to many parts of its environment.
We find that every theory with non-classical features that admits this idealized spreading of classical information must have both entangled states and entangled measurements.
Our result suggests the counter-intuitive general principle that in the presence of local non-classicality, a classical world can only emerge if this non-classicality can be "amplified" to a form of entanglement.
arXiv Detail & Related papers (2020-12-11T18:40:16Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.