Continual Adversarial Defense
- URL: http://arxiv.org/abs/2312.09481v4
- Date: Wed, 25 Sep 2024 00:07:50 GMT
- Title: Continual Adversarial Defense
- Authors: Qian Wang, Yaoyao Liu, Hefei Ling, Yingwei Li, Qihao Liu, Ping Li, Jiazhong Chen, Alan Yuille, Ning Yu,
- Abstract summary: A defense system continuously collects adversarial data online to quickly improve itself.
Continual adaptation to new attacks without catastrophic forgetting, few-shot adaptation, memory-efficient adaptation, and high accuracy on both clean and adversarial data.
In particular, CAD is capable of quickly adapting with minimal budget and a low cost of defense failure while maintaining good performance against previous attacks.
- Score: 37.37029638528458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In response to the rapidly evolving nature of adversarial attacks against visual classifiers on a monthly basis, numerous defenses have been proposed to generalize against as many known attacks as possible. However, designing a defense method that generalizes to all types of attacks is not realistic because the environment in which defense systems operate is dynamic and comprises various unique attacks that emerge as time goes on. A well-matched approach to the dynamic environment lies in a defense system that continuously collects adversarial data online to quickly improve itself. Therefore, we put forward a practical defense deployment against a challenging threat model and propose, for the first time, the Continual Adversarial Defense (CAD) framework that adapts to attack sequences under four principles: (1) continual adaptation to new attacks without catastrophic forgetting, (2) few-shot adaptation, (3) memory-efficient adaptation, and (4) high accuracy on both clean and adversarial data. We explore and integrate cutting-edge continual learning, few-shot learning, and ensemble learning techniques to qualify the principles. Extensive experiments validate the effectiveness of our approach against multiple stages of modern adversarial attacks and demonstrate significant improvements over numerous baseline methods. In particular, CAD is capable of quickly adapting with minimal budget and a low cost of defense failure while maintaining good performance against previous attacks. Our research sheds light on a brand-new paradigm for continual defense adaptation against dynamic and evolving attacks.
Related papers
- Position: Towards Resilience Against Adversarial Examples [42.09231029292568]
We provide a definition of adversarial resilience and outline considerations of designing an adversarially resilient defense.
We then introduce a subproblem of adversarial resilience which we call continual adaptive robustness.
We demonstrate the connection between continual adaptive robustness and previously studied problems of multiattack robustness and unforeseen attack robustness.
arXiv Detail & Related papers (2024-05-02T14:58:44Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Deep Reinforcement Learning for Cyber System Defense under Dynamic
Adversarial Uncertainties [5.78419291062552]
We propose a data-driven deep reinforcement learning framework to learn proactive, context-aware defense countermeasures.
A dynamic defense optimization problem is formulated with multiple protective postures against different types of adversaries.
arXiv Detail & Related papers (2023-02-03T08:33:33Z) - Robust Multivariate Time-Series Forecasting: Adversarial Attacks and
Defense Mechanisms [17.75675910162935]
A new attack pattern negatively impacts the forecasting of a target time series.
We develop two defense strategies to mitigate the impact of such attack.
Experiments on real-world datasets confirm that our attack schemes are powerful.
arXiv Detail & Related papers (2022-07-19T22:00:41Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.