Further improving quantum algorithms for nonlinear differential
equations via higher-order methods and rescaling
- URL: http://arxiv.org/abs/2312.09518v1
- Date: Fri, 15 Dec 2023 03:52:44 GMT
- Title: Further improving quantum algorithms for nonlinear differential
equations via higher-order methods and rescaling
- Authors: Pedro C. S. Costa, Philipp Schleich, Mauro E. S. Morales, and Dominic
W. Berry
- Abstract summary: We present three main improvements to existing quantum algorithms based on the Carleman linearisation technique.
By using a high-precision technique for the solution of the linearised differential equations, we achieve logarithmic dependence of the complexity on the error and near-linear dependence on time.
A rescaling technique can considerably reduce the cost, which would otherwise be exponential in the Carleman order for a system of ODEs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The solution of large systems of nonlinear differential equations is needed
for many applications in science and engineering. In this study, we present
three main improvements to existing quantum algorithms based on the Carleman
linearisation technique. First, by using a high-precision technique for the
solution of the linearised differential equations, we achieve logarithmic
dependence of the complexity on the error and near-linear dependence on time.
Second, we demonstrate that a rescaling technique can considerably reduce the
cost, which would otherwise be exponential in the Carleman order for a system
of ODEs, preventing a quantum speedup for PDEs. Third, we provide improved,
tighter bounds on the error of Carleman linearisation. We apply our results to
a class of discretised reaction-diffusion equations using higher-order finite
differences for spatial resolution. We show that providing a stability
criterion independent of the discretisation can conflict with the use of the
rescaling due to the difference between the max-norm and 2-norm. An efficient
solution may still be provided if the number of discretisation points is
limited, as is possible when using higher-order discretisations.
Related papers
- Variational Quantum Framework for Nonlinear PDE Constrained Optimization Using Carleman Linearization [0.8704964543257243]
We present a novel variational quantum framework for nonlinear partial differential equation (PDE) constrained optimization problems.
We use Carleman linearization (CL) to transform a system of ordinary differential equations into a system of infinite but linear system of ODE.
We present detailed computational error and complexity analysis and prove that under suitable assumptions, our proposed framework can provide potential advantage over classical techniques.
arXiv Detail & Related papers (2024-10-17T15:51:41Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Time-marching based quantum solvers for time-dependent linear
differential equations [3.1952399274829775]
The time-marching strategy is a natural strategy for solving time-dependent differential equations on classical computers.
We show that a time-marching based quantum solver can suffer from exponentially vanishing success probability with respect to the number of time steps.
This provides a path of designing quantum differential equation solvers that is alternative to those based on quantum linear systems algorithms.
arXiv Detail & Related papers (2022-08-14T23:49:19Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
We propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.
We provide theoretical guarantees for the correctness and convergence of neural solvers analogous to conventional iterative solvers.
arXiv Detail & Related papers (2021-09-03T12:03:10Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.