Ins-HOI: Instance Aware Human-Object Interactions Recovery
- URL: http://arxiv.org/abs/2312.09641v2
- Date: Thu, 21 Mar 2024 15:57:28 GMT
- Title: Ins-HOI: Instance Aware Human-Object Interactions Recovery
- Authors: Jiajun Zhang, Yuxiang Zhang, Hongwen Zhang, Xiao Zhou, Boyao Zhou, Ruizhi Shao, Zonghai Hu, Yebin Liu,
- Abstract summary: We propose an end-to-end Instance-aware Human-Object Interactions recovery (Ins-HOI) framework.
Ins-HOI supports instance-level reconstruction and provides reasonable and realistic invisible contact surfaces.
We collect a large-scale, high-fidelity 3D scan dataset, including 5.2k high-quality scans with real-world human-chair and hand-object interactions.
- Score: 44.02128629239429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately modeling detailed interactions between human/hand and object is an appealing yet challenging task. Current multi-view capture systems are only capable of reconstructing multiple subjects into a single, unified mesh, which fails to model the states of each instance individually during interactions. To address this, previous methods use template-based representations to track human/hand and object. However, the quality of the reconstructions is limited by the descriptive capabilities of the templates so that these methods are inherently struggle with geometry details, pressing deformations and invisible contact surfaces. In this work, we propose an end-to-end Instance-aware Human-Object Interactions recovery (Ins-HOI) framework by introducing an instance-level occupancy field representation. However, the real-captured data is presented as a holistic mesh, unable to provide instance-level supervision. To address this, we further propose a complementary training strategy that leverages synthetic data to introduce instance-level shape priors, enabling the disentanglement of occupancy fields for different instances. Specifically, synthetic data, created by randomly combining individual scans of humans/hands and objects, guides the network to learn a coarse prior of instances. Meanwhile, real-captured data helps in learning the overall geometry and restricting interpenetration in contact areas. As demonstrated in experiments, our method Ins-HOI supports instance-level reconstruction and provides reasonable and realistic invisible contact surfaces even in cases of extremely close interaction. To facilitate the research of this task, we collect a large-scale, high-fidelity 3D scan dataset, including 5.2k high-quality scans with real-world human-chair and hand-object interactions. The code and data will be public for research purposes.
Related papers
- Ask, Pose, Unite: Scaling Data Acquisition for Close Interactions with Vision Language Models [5.541130887628606]
Social dynamics in close human interactions pose significant challenges for Human Mesh Estimation (HME)
We introduce a novel data generation method that utilizes Large Vision Language Models (LVLMs) to annotate contact maps which guide test-time optimization to produce paired image and pseudo-ground truth meshes.
This methodology not only alleviates the annotation burden but also enables the assembly of a comprehensive dataset specifically tailored for close interactions in HME.
arXiv Detail & Related papers (2024-10-01T01:14:24Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation [38.08445005326031]
We propose ProciGen to procedurally generate datasets with both, plausible interaction and diverse object variation.
We generate 1M+ human-object interaction pairs in 3D and leverage this large-scale data to train our HDM (Procedural Diffusion Model)
Our HDM is an image-conditioned diffusion model that learns both realistic interaction and highly accurate human and object shapes.
arXiv Detail & Related papers (2023-12-12T08:32:55Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
We present the first full body human- object interaction dataset with multi-view RGBD frames and corresponding 3D SMPL and object fits along with the annotated contacts between them.
We use this data to learn a model that can jointly track humans and objects in natural environments with an easy-to-use portable multi-camera setup.
arXiv Detail & Related papers (2022-04-14T13:21:19Z) - DemoGrasp: Few-Shot Learning for Robotic Grasping with Human
Demonstration [42.19014385637538]
We propose to teach a robot how to grasp an object with a simple and short human demonstration.
We first present a small sequence of RGB-D images displaying a human-object interaction.
This sequence is then leveraged to build associated hand and object meshes that represent the interaction.
arXiv Detail & Related papers (2021-12-06T08:17:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.