Style Generation in Robot Calligraphy with Deep Generative Adversarial
Networks
- URL: http://arxiv.org/abs/2312.09673v1
- Date: Fri, 15 Dec 2023 10:35:30 GMT
- Title: Style Generation in Robot Calligraphy with Deep Generative Adversarial
Networks
- Authors: Xiaoming Wang, Zhiguo Gong
- Abstract summary: The number of Chinese characters is tens of thousands, which leads to difficulties in the generation of a style consistent Chinese calligraphic font with over 6000 characters.
This paper proposes an automatic calligraphy generation model based on deep generative adversarial networks (deepGAN) that can generate style calligraphy fonts with professional standards.
- Score: 15.199472080437527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot calligraphy is an emerging exploration of artificial intelligence in
the fields of art and education. Traditional calligraphy generation researches
mainly focus on methods such as tool-based image processing, generative models,
and style transfer. Unlike the English alphabet, the number of Chinese
characters is tens of thousands, which leads to difficulties in the generation
of a style consistent Chinese calligraphic font with over 6000 characters. Due
to the lack of high-quality data sets, formal definitions of calligraphy
knowledge, and scientific art evaluation methods, The results generated are
frequently of low quality and falls short of professional-level requirements.
To address the above problem, this paper proposes an automatic calligraphy
generation model based on deep generative adversarial networks (deepGAN) that
can generate style calligraphy fonts with professional standards. The key
highlights of the proposed method include: (1) The datasets use a
high-precision calligraphy synthesis method to ensure its high quality and
sufficient quantity; (2) Professional calligraphers are invited to conduct a
series of Turing tests to evaluate the gap between model generation results and
human artistic level; (3) Experimental results indicate that the proposed model
is the state-of-the-art among current calligraphy generation methods. The
Turing tests and similarity evaluations validate the effectiveness of the
proposed method.
Related papers
- Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training [68.41837295318152]
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with visual texts.
Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese text.
We propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese.
arXiv Detail & Related papers (2024-10-06T10:25:39Z) - Information Theoretic Text-to-Image Alignment [49.396917351264655]
We present a novel method that relies on an information-theoretic alignment measure to steer image generation.
Our method is on-par or superior to the state-of-the-art, yet requires nothing but a pre-trained denoising network to estimate MI.
arXiv Detail & Related papers (2024-05-31T12:20:02Z) - Few-shot Calligraphy Style Learning [0.0]
"Presidifussion" is a novel approach to learning and replicating the unique style of calligraphy of President Xu.
We introduce innovative techniques of font image conditioning and stroke information conditioning, enabling the model to capture the intricate structural elements of Chinese characters.
This work not only presents a breakthrough in the digital preservation of calligraphic art but also sets a new standard for data-efficient generative modeling in the domain of cultural heritage digitization.
arXiv Detail & Related papers (2024-04-26T07:17:09Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
We propose the novel Part of Stroke Masking (POSM) as a pretext task for pretraining models to extract informative representations from the online handwriting of individuals in English and Chinese languages.
To evaluate the quality of the extracted representations, we use both intrinsic and extrinsic evaluation methods.
The pretrained models are fine-tuned to achieve state-of-the-art results in tasks such as writer identification, gender classification, and handedness classification.
arXiv Detail & Related papers (2023-10-10T14:07:49Z) - AGTGAN: Unpaired Image Translation for Photographic Ancient Character
Generation [27.77329906930072]
We propose an unsupervised generative adversarial network called AGTGAN.
By explicit global and local glyph shape style modeling, our method can generate characters with diverse glyphs and realistic textures.
With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.
arXiv Detail & Related papers (2023-03-13T11:18:41Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
We propose a novel one-shot font generation method based on a diffusion model, named Diff-Font.
The proposed model aims to generate the entire font library by giving only one sample as the reference.
The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation.
arXiv Detail & Related papers (2022-12-12T13:51:50Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
Text-to-image diffusion models can generate high-quality pictures from textual input prompts.
These models have been trained using text data collected from content-based labelling protocols.
We characterise the sentimentality, objectiveness and degree of abstraction of publicly available text data used to train current text-to-image diffusion models.
arXiv Detail & Related papers (2022-10-19T14:20:05Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
We introduce contrastive learning and masked image modeling to learn discrimination and generation of text images.
Our method outperforms previous self-supervised text recognition methods by 10.2%-20.2% on irregular scene text recognition datasets.
Our proposed text recognizer exceeds previous state-of-the-art text recognition methods by averagely 5.3% on 11 benchmarks, with similar model size.
arXiv Detail & Related papers (2022-07-01T03:50:26Z) - ShufaNet: Classification method for calligraphers who have reached the
professional level [0.0]
We propose a novel method, ShufaNet, to classify Chinese calligraphers' styles based on metric learning.
Our method achieved 65% accuracy rate in our data set for few-shot learning, surpassing resNet and other mainstream CNNs.
arXiv Detail & Related papers (2021-11-22T16:55:31Z) - One-shot Compositional Data Generation for Low Resource Handwritten Text
Recognition [10.473427493876422]
Low resource Handwritten Text Recognition is a hard problem due to the scarce annotated data and the very limited linguistic information.
In this paper we address this problem through a data generation technique based on Bayesian Program Learning.
Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet.
arXiv Detail & Related papers (2021-05-11T18:53:01Z) - Neural Language Modeling for Contextualized Temporal Graph Generation [49.21890450444187]
This paper presents the first study on using large-scale pre-trained language models for automated generation of an event-level temporal graph for a document.
arXiv Detail & Related papers (2020-10-20T07:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.