Reliable Probabilistic Classification with Neural Networks
- URL: http://arxiv.org/abs/2312.09912v1
- Date: Fri, 15 Dec 2023 16:23:25 GMT
- Title: Reliable Probabilistic Classification with Neural Networks
- Authors: Harris Papadopoulos
- Abstract summary: Venn Prediction (VP) is a new machine learning framework for producing well-calibrated probabilistic predictions.
This paper proposes five VP methods based on Neural Networks (NNs), which is one of the most widely used machine learning techniques.
- Score: 0.6993026261767287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Venn Prediction (VP) is a new machine learning framework for producing
well-calibrated probabilistic predictions. In particular it provides
well-calibrated lower and upper bounds for the conditional probability of an
example belonging to each possible class of the problem at hand. This paper
proposes five VP methods based on Neural Networks (NNs), which is one of the
most widely used machine learning techniques. The proposed methods are
evaluated experimentally on four benchmark datasets and the obtained results
demonstrate the empirical well-calibratedness of their outputs and their
superiority over the outputs of the traditional NN classifier.
Related papers
- An Interpretable Alternative to Neural Representation Learning for Rating Prediction -- Transparent Latent Class Modeling of User Reviews [8.392465185798713]
We present a transparent probabilistic model that organizes user and product latent classes based on the review information.
We evaluate our results in terms of both capacity for interpretability and predictive performances in comparison with popular text-based neural approaches.
arXiv Detail & Related papers (2024-06-17T07:07:42Z) - Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples.
We try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view.
arXiv Detail & Related papers (2024-06-06T10:38:01Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Amortised Inference in Bayesian Neural Networks [0.0]
We introduce the Amortised Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)
We show that the amortised inference is of similar or better quality to those obtained through traditional variational inference.
We then discuss how the APOVI-BNN may be viewed as a new member of the neural process family.
arXiv Detail & Related papers (2023-09-06T14:02:33Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Towards Robust Neural Retrieval Models with Synthetic Pre-Training [28.547347789198096]
We show that synthetic training examples generated using a sequence-to-sequence generator can be effective towards this goal.
In our experiments, pre-training with synthetic examples improves retrieval performance in both in-domain and out-of-domain evaluation on five different test sets.
arXiv Detail & Related papers (2021-04-15T22:12:01Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Sampling Prediction-Matching Examples in Neural Networks: A
Probabilistic Programming Approach [9.978961706999833]
We consider the problem of exploring the prediction level sets of a classifier using probabilistic programming.
We define a prediction level set to be the set of examples for which the predictor has the same specified prediction confidence.
We demonstrate this technique with experiments on a synthetic dataset and MNIST.
arXiv Detail & Related papers (2020-01-09T15:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.