FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models
- URL: http://arxiv.org/abs/2312.09926v2
- Date: Fri, 5 Jul 2024 08:23:00 GMT
- Title: FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models
- Authors: Lei Chen, Xiaohui Zhong, Hao Li, Jie Wu, Bo Lu, Deliang Chen, Shangping Xie, Qingchen Chao, Chensen Lin, Zixin Hu, Yuan Qi,
- Abstract summary: FuXi Subseasonal-to-Seasonal (FuXi-S2S) is a machine learning model that provides global daily mean forecasts up to 42 days.
FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model.
- Score: 13.852128658186876
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of FuXi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, FuXi-S2S not only captures realistic teleconnections associated with the MJO, but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - FuXi-2.0: Advancing machine learning weather forecasting model for practical applications [11.50902060124504]
FuXi-2.0 is an advanced machine learning model that delivers 1-hourly global weather forecasts and includes a comprehensive set of meteorological variables.
FuXi-2.0 consistently outperforms ECMWF HRES in forecasting key meteorological variables relevant to wind and solar energy, aviation, and marine shipping sectors.
FuXi-2.0 also integrates both atmospheric and oceanic components, representing a significant step forward in the development of coupled atmospheric-ocean models.
arXiv Detail & Related papers (2024-09-11T11:21:00Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
We present an operations-ready multi-model ensemble weather forecasting system.
It is possible to achieve near-state-of-the-art subseasonal-to-seasonal forecasts using a multi-model ensembling approach with data-driven weather prediction models.
arXiv Detail & Related papers (2024-03-22T20:01:53Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FuXi-Extreme: Improving extreme rainfall and wind forecasts with
diffusion model [14.19376315634697]
We develop the FuXi-Extreme model to restore finer-scale details in the surface forecast data generated by the FuXi model in 5-day forecasts.
FuXi and FuXi-Extreme show superior performance in TC track forecasts compared to HRES, but they show inferior performance in TC intensity forecasts in comparison to HRES.
arXiv Detail & Related papers (2023-10-25T02:16:02Z) - FuXi: A cascade machine learning forecasting system for 15-day global
weather forecast [34.812266901884996]
FuXi is a cascaded ML weather forecasting system that provides 15-day global forecasts with a temporal resolution of 6 hours and a spatial resolution of 0.25 degree.
FuXi has comparable forecast performance to ECMWF EM in 15-day forecasts, making FuXi the first ML-based weather forecasting system to accomplish this achievement.
arXiv Detail & Related papers (2023-06-22T13:34:26Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.