FuXi-2.0: Advancing machine learning weather forecasting model for practical applications
- URL: http://arxiv.org/abs/2409.07188v1
- Date: Wed, 11 Sep 2024 11:21:00 GMT
- Title: FuXi-2.0: Advancing machine learning weather forecasting model for practical applications
- Authors: Xiaohui Zhong, Lei Chen, Xu Fan, Wenxu Qian, Jun Liu, Hao Li,
- Abstract summary: FuXi-2.0 is an advanced machine learning model that delivers 1-hourly global weather forecasts and includes a comprehensive set of meteorological variables.
FuXi-2.0 consistently outperforms ECMWF HRES in forecasting key meteorological variables relevant to wind and solar energy, aviation, and marine shipping sectors.
FuXi-2.0 also integrates both atmospheric and oceanic components, representing a significant step forward in the development of coupled atmospheric-ocean models.
- Score: 11.50902060124504
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) models have become increasingly valuable in weather forecasting, providing forecasts that not only lower computational costs but often match or exceed the accuracy of traditional numerical weather prediction (NWP) models. Despite their potential, ML models typically suffer from limitations such as coarse temporal resolution, typically 6 hours, and a limited set of meteorological variables, limiting their practical applicability. To overcome these challenges, we introduce FuXi-2.0, an advanced ML model that delivers 1-hourly global weather forecasts and includes a comprehensive set of essential meteorological variables, thereby expanding its utility across various sectors like wind and solar energy, aviation, and marine shipping. Our study conducts comparative analyses between ML-based 1-hourly forecasts and those from the high-resolution forecast (HRES) of the European Centre for Medium-Range Weather Forecasts (ECMWF) for various practical scenarios. The results demonstrate that FuXi-2.0 consistently outperforms ECMWF HRES in forecasting key meteorological variables relevant to these sectors. In particular, FuXi-2.0 shows superior performance in wind power forecasting compared to ECMWF HRES, further validating its efficacy as a reliable tool for scenarios demanding precise weather forecasts. Additionally, FuXi-2.0 also integrates both atmospheric and oceanic components, representing a significant step forward in the development of coupled atmospheric-ocean models. Further comparative analyses reveal that FuXi-2.0 provides more accurate forecasts of tropical cyclone intensity than its predecessor, FuXi-1.0, suggesting that there are benefits of an atmosphere-ocean coupled model over atmosphere-only models.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weather is a machine learning weather forecasting system that assimilates data from multiple satellites.
FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa.
arXiv Detail & Related papers (2024-08-10T07:42:01Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
arXiv Detail & Related papers (2024-05-09T17:15:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models [13.852128658186876]
FuXi Subseasonal-to-Seasonal (FuXi-S2S) is a machine learning model that provides global daily mean forecasts up to 42 days.
FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model.
arXiv Detail & Related papers (2023-12-15T16:31:44Z) - FuXi-Extreme: Improving extreme rainfall and wind forecasts with
diffusion model [14.19376315634697]
We develop the FuXi-Extreme model to restore finer-scale details in the surface forecast data generated by the FuXi model in 5-day forecasts.
FuXi and FuXi-Extreme show superior performance in TC track forecasts compared to HRES, but they show inferior performance in TC intensity forecasts in comparison to HRES.
arXiv Detail & Related papers (2023-10-25T02:16:02Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.