Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms
- URL: http://arxiv.org/abs/2312.09939v2
- Date: Tue, 26 Dec 2023 22:33:50 GMT
- Title: Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms
- Authors: Sahil Nokhwal, Suman Nokhwal, Saurabh Pahune and Ankit Chaudhary
- Abstract summary: We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
- Score: 0.6827423171182153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this pioneering research paper, we present a groundbreaking exploration
into the synergistic fusion of classical and quantum computing paradigms within
the realm of Generative Adversarial Networks (GANs). Our objective is to
seamlessly integrate quantum computational elements into the conventional GAN
architecture, thereby unlocking novel pathways for enhanced training processes.
Drawing inspiration from the inherent capabilities of quantum bits (qubits),
we delve into the incorporation of quantum data representation methodologies
within the GAN framework. By capitalizing on the unique quantum features, we
aim to accelerate the training process of GANs, offering a fresh perspective on
the optimization of generative models.
Our investigation deals with theoretical considerations and evaluates the
potential quantum advantages that may manifest in terms of training efficiency
and generative quality. We confront the challenges inherent in the
quantum-classical amalgamation, addressing issues related to quantum hardware
constraints, error correction mechanisms, and scalability considerations. This
research is positioned at the forefront of quantum-enhanced machine learning,
presenting a critical stride towards harnessing the computational power of
quantum systems to expedite the training of Generative Adversarial Networks.
Through our comprehensive examination of the interface between classical and
quantum realms, we aim to uncover transformative insights that will propel the
field forward, fostering innovation and advancing the frontier of quantum
machine learning.
Related papers
- Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
distributed quantum computing aims to boost the computational power of current quantum systems.
From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing.
Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
arXiv Detail & Related papers (2024-04-01T17:38:18Z) - End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models [20.72342380227143]
This paper introduces an end-to-end Quantum Vision Transformer (QViT), which incorporates an innovative quantum residual connection technique.
Our thorough analysis of the QViT reveals a theoretically exponential complexity and empirically speedup, showcasing the model's efficiency and potential in quantum computing applications.
arXiv Detail & Related papers (2024-02-29T08:12:02Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.