End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models
- URL: http://arxiv.org/abs/2402.18940v2
- Date: Fri, 1 Mar 2024 06:05:47 GMT
- Title: End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models
- Authors: Cheng Xue, Zhao-Yun Chen, Xi-Ning Zhuang, Yun-Jie Wang, Tai-Ping Sun,
Jun-Chao Wang, Huan-Yu Liu, Yu-Chun Wu, Zi-Lei Wang, Guo-Ping Guo
- Abstract summary: This paper introduces an end-to-end Quantum Vision Transformer (QViT), which incorporates an innovative quantum residual connection technique.
Our thorough analysis of the QViT reveals a theoretically exponential complexity and empirically speedup, showcasing the model's efficiency and potential in quantum computing applications.
- Score: 20.72342380227143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of quantum deep learning presents significant opportunities for
advancing computational capabilities, yet it faces a major obstacle in the form
of the "information loss problem" due to the inherent limitations of the
necessary quantum tomography in scaling quantum deep neural networks. This
paper introduces an end-to-end Quantum Vision Transformer (QViT), which
incorporates an innovative quantum residual connection technique, to overcome
these challenges and therefore optimize quantum computing processes in deep
learning. Our thorough complexity analysis of the QViT reveals a theoretically
exponential and empirically polynomial speedup, showcasing the model's
efficiency and potential in quantum computing applications. We conducted
extensive numerical tests on modern, large-scale transformers and datasets,
establishing the QViT as a pioneering advancement in applying quantum deep
neural networks in practical scenarios. Our work provides a comprehensive
quantum deep learning paradigm, which not only demonstrates the versatility of
current quantum linear algebra algorithms but also promises to enhance future
research and development in quantum deep learning.
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning.
This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics.
arXiv Detail & Related papers (2024-09-04T08:49:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
In this work, we explore binary neural networks, which are lightweight yet powerful models typically intended for resource constrained devices.
We devise a quadratic unconstrained binary optimization formulation for the training problem.
While the problem is intractable, i.e., the cost to estimate the binary weights scales exponentially with network size, we show how the problem can be optimized directly on a quantum annealer.
arXiv Detail & Related papers (2021-07-05T03:20:54Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.