SAT-Based Algorithms for Regular Graph Pattern Matching
- URL: http://arxiv.org/abs/2312.09995v1
- Date: Fri, 15 Dec 2023 18:12:44 GMT
- Title: SAT-Based Algorithms for Regular Graph Pattern Matching
- Authors: Miguel Terra-Neves and Jos\'e Amaral and Alexandre Lemos and Rui
Quintino and Pedro Resende and Antonio Alegria
- Abstract summary: We propose a generalization of graph isomorphism that allows one to check complex structural properties.
This specification is given in the form of a Regular Graph Pattern (ReGaP), a special type of graph inspired by regular expressions.
We propose a SAT-based algorithm for checking if a target graph matches a given ReGaP.
- Score: 40.86962847131912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph matching is a fundamental problem in pattern recognition, with many
applications such as software analysis and computational biology. One
well-known type of graph matching problem is graph isomorphism, which consists
of deciding if two graphs are identical. Despite its usefulness, the properties
that one may check using graph isomorphism are rather limited, since it only
allows strict equality checks between two graphs. For example, it does not
allow one to check complex structural properties such as if the target graph is
an arbitrary length sequence followed by an arbitrary size loop.
We propose a generalization of graph isomorphism that allows one to check
such properties through a declarative specification. This specification is
given in the form of a Regular Graph Pattern (ReGaP), a special type of graph,
inspired by regular expressions, that may contain wildcard nodes that represent
arbitrary structures such as variable-sized sequences or subgraphs. We propose
a SAT-based algorithm for checking if a target graph matches a given ReGaP. We
also propose a preprocessing technique for improving the performance of the
algorithm and evaluate it through an extensive experimental evaluation on
benchmarks from the CodeSearchNet dataset.
Related papers
- PlanE: Representation Learning over Planar Graphs [9.697671872347131]
This work is inspired by the classical planar graph isomorphism algorithm of Hopcroft and Tarjan.
PlanE includes architectures which can learn complete invariants over planar graphs while remaining practically scalable.
arXiv Detail & Related papers (2023-07-03T17:45:01Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
Subgraph isomorphism counting is an important problem on graphs.
In this paper, we propose a novel graph neural network (GNN) called Count-GNN for subgraph isomorphism counting.
arXiv Detail & Related papers (2023-02-07T05:32:11Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
We propose a novel criterion to measure the graph matching accuracy, structural inconsistency (SI)
Specifically, SI incorporates the heat diffusion wavelet to accommodate the multi-hop structure of the graphs.
We show that SIGMA can be derived by using a mirror descent method to solve the Gromov-Wasserstein distance with a novel K-hop-structure-based matching costs.
arXiv Detail & Related papers (2022-02-06T15:18:37Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.