Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects
- URL: http://arxiv.org/abs/2312.10008v2
- Date: Mon, 10 Jun 2024 08:11:00 GMT
- Title: Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects
- Authors: Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann, Rudolf Lioutikov, Franziska Mathis-Ullrich,
- Abstract summary: Movement Primitive Diffusion (MPD) is a novel method for imitation learning (IL) in robot-assisted surgery.
MPD combines the versatility of diffusion-based imitation learning (DIL) with the high-quality motion generation capabilities of Probabilistic Dynamic Movement Primitives (ProDMPs)
We evaluate MPD across various simulated and real world robotic tasks on both state and image observations.
- Score: 14.446751610174868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy learning in robot-assisted surgery (RAS) lacks data efficient and versatile methods that exhibit the desired motion quality for delicate surgical interventions. To this end, we introduce Movement Primitive Diffusion (MPD), a novel method for imitation learning (IL) in RAS that focuses on gentle manipulation of deformable objects. The approach combines the versatility of diffusion-based imitation learning (DIL) with the high-quality motion generation capabilities of Probabilistic Dynamic Movement Primitives (ProDMPs). This combination enables MPD to achieve gentle manipulation of deformable objects, while maintaining data efficiency critical for RAS applications where demonstration data is scarce. We evaluate MPD across various simulated and real world robotic tasks on both state and image observations. MPD outperforms state-of-the-art DIL methods in success rate, motion quality, and data efficiency. Project page: https://scheiklp.github.io/movement-primitive-diffusion/
Related papers
- ReinDiffuse: Crafting Physically Plausible Motions with Reinforced Diffusion Model [9.525806425270428]
We present emphReinDiffuse that combines reinforcement learning with motion diffusion model to generate physically credible human motions.
Our method adapts Motion Diffusion Model to output a parameterized distribution of actions, making them compatible with reinforcement learning paradigms.
Our approach outperforms existing state-of-the-art models on two major datasets, HumanML3D and KIT-ML.
arXiv Detail & Related papers (2024-10-09T16:24:11Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGen is a novel framework that integrates differentiable physics simulation, differentiable rendering, and a vision-language model.
It can generate realistic robot demonstrations by minimizing the distance between the embedding of the language instruction and the embedding of the simulated observation.
Experiments demonstrate that with DiffGen, we could efficiently and effectively generate robot data with minimal human effort or training time.
arXiv Detail & Related papers (2024-05-12T15:38:17Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - Few-Shot Learning of Force-Based Motions From Demonstration Through
Pre-training of Haptic Representation [10.553635668779911]
Existing Learning from Demonstration (LfD) approaches require a large number of costly human demonstrations.
Our proposed semi-supervised LfD approach decouples the learnt model into an haptic representation encoder and a motion generation decoder.
This enables us to pre-train the first using large amount of unsupervised data, easily accessible, while using few-shot LfD to train the second.
We validate the motion generated by our semi-supervised LfD model on the physical robot hardware using the KUKA iiwa robot arm.
arXiv Detail & Related papers (2023-09-08T23:42:59Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
We propose Multimodal Interactive Latent Dynamics (MILD) to address the problem of two-party physical Human-Robot Interactions (HRIs)
We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE)
MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory.
arXiv Detail & Related papers (2022-10-22T11:25:11Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.