Unsupervised Learning of Effective Actions in Robotics
- URL: http://arxiv.org/abs/2404.02728v1
- Date: Wed, 3 Apr 2024 13:28:52 GMT
- Title: Unsupervised Learning of Effective Actions in Robotics
- Authors: Marko Zaric, Jakob Hollenstein, Justus Piater, Erwan Renaudo,
- Abstract summary: Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
- Score: 0.9374652839580183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning actions that are relevant to decision-making and can be executed effectively is a key problem in autonomous robotics. Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions. Although successful in solving manipulation tasks, deep learning methods also lack this ability, in addition to their high cost in terms of memory or training data. In this paper, we propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes", each producing different effects in the environment. After an exploration phase, the algorithm automatically builds a representation of the effects and groups motions into action prototypes, where motions more likely to produce an effect are represented more than those that lead to negligible changes. We evaluate our method on a simulated stair-climbing reinforcement learning task, and the preliminary results show that our effect driven discretization outperforms uniformly and randomly sampled discretizations in convergence speed and maximum reward.
Related papers
- Moto: Latent Motion Token as the Bridging Language for Robot Manipulation [66.18557528695924]
We introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer.
We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge.
To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control.
arXiv Detail & Related papers (2024-12-05T18:57:04Z) - Sample Efficient Robot Learning in Supervised Effect Prediction Tasks [0.0]
In this work, we develop a novel AL framework geared towards robotics regression tasks, such as action-effect prediction and, more generally, for world model learning, which we call MUSEL.
MUSEL aims to extract model uncertainty from the total uncertainty estimate given by a suitable learning engine by making use of earning progress and input diversity and use it to improve sample efficiency beyond the state-of-the-art action-effect prediction methods.
The efficacy of MUSEL is demonstrated by comparing its performance to standard methods used in robot action-effect learning.
arXiv Detail & Related papers (2024-12-03T09:48:28Z) - Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based reinforcement learning algorithm.
We study our algorithm on 53 robotic tasks with sparse and dense rewards, as well as with and without demonstrations.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGen is a novel framework that integrates differentiable physics simulation, differentiable rendering, and a vision-language model.
It can generate realistic robot demonstrations by minimizing the distance between the embedding of the language instruction and the embedding of the simulated observation.
Experiments demonstrate that with DiffGen, we could efficiently and effectively generate robot data with minimal human effort or training time.
arXiv Detail & Related papers (2024-05-12T15:38:17Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
This paper aims to define and incorporate the natural symmetry present in physical robotic environments.
The proposed method is validated via two point-to-point reaching tasks of an industrial arm, with and without an obstacle.
A comparison study between the proposed method and a traditional off-policy reinforcement learning algorithm indicates its advantage in learning performance and potential value for applications.
arXiv Detail & Related papers (2023-04-12T11:38:01Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
Reinforcement learning has been successfully applied to solving the reaching task with robotic arms.
It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents.
arXiv Detail & Related papers (2020-11-11T14:00:49Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.