Knowledge Graph Enhanced Aspect-Level Sentiment Analysis
- URL: http://arxiv.org/abs/2312.10048v3
- Date: Sat, 27 Jan 2024 00:09:23 GMT
- Title: Knowledge Graph Enhanced Aspect-Level Sentiment Analysis
- Authors: Kavita Sharma, Ritu Patel, Sunita Iyer
- Abstract summary: We propose a novel method to enhance sentiment analysis by addressing the challenge of context-specific word meanings.
It combines the advantages of a BERT model with a knowledge graph based synonym data.
For classifying sentiments linked to specific aspects, the approach constructs a memory bank integrating positional data.
The data are then analyzed using a DCGRU to pinpoint sentiment characteristics related to specific aspect terms.
- Score: 1.342834401139078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel method to enhance sentiment analysis by
addressing the challenge of context-specific word meanings. It combines the
advantages of a BERT model with a knowledge graph based synonym data. This
synergy leverages a dynamic attention mechanism to develop a knowledge-driven
state vector. For classifying sentiments linked to specific aspects, the
approach constructs a memory bank integrating positional data. The data are
then analyzed using a DCGRU to pinpoint sentiment characteristics related to
specific aspect terms. Experiments on three widely used datasets demonstrate
the superior performance of our method in sentiment classification.
Related papers
- Graph Neural Network Framework for Sentiment Analysis Using Syntactic Feature [12.588486071926388]
This research advances a composite framework that amalgamates the positional cues of topical descriptors.
Trials have substantiated that this integrated graph-centric scheme markedly elevates the efficacy of evaluative categorization.
arXiv Detail & Related papers (2024-09-21T03:30:59Z) - Advancing Aspect-Based Sentiment Analysis through Deep Learning Models [4.0064131990718606]
This study introduces an innovative edge-enhanced GCN, named SentiSys, to navigate the syntactic graph while preserving intact feature information.
The experimental results demonstrate enhanced performance in aspect-based sentiment analysis with the use of SentiSys.
arXiv Detail & Related papers (2024-04-04T07:31:56Z) - A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning.
The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies.
arXiv Detail & Related papers (2024-03-25T23:02:33Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - A semantically enhanced dual encoder for aspect sentiment triplet
extraction [0.7291396653006809]
Aspect sentiment triplet extraction (ASTE) is a crucial subtask of aspect-based sentiment analysis (ABSA)
Previous research has focused on enhancing ASTE through innovative table-filling strategies.
We propose a framework that leverages both a basic encoder, primarily based on BERT, and a particular encoder comprising a Bi-LSTM network and graph convolutional network (GCN)
Experiments conducted on benchmark datasets demonstrate the state-of-the-art performance of our proposed framework.
arXiv Detail & Related papers (2023-06-14T09:04:14Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - GINet: Graph Interaction Network for Scene Parsing [58.394591509215005]
We propose a Graph Interaction unit (GI unit) and a Semantic Context Loss (SC-loss) to promote context reasoning over image regions.
The proposed GINet outperforms the state-of-the-art approaches on the popular benchmarks, including Pascal-Context and COCO Stuff.
arXiv Detail & Related papers (2020-09-14T02:52:45Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.