Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting
- URL: http://arxiv.org/abs/2312.10070v2
- Date: Fri, 22 Mar 2024 17:59:09 GMT
- Title: Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting
- Authors: Vladimir Yugay, Yue Li, Theo Gevers, Martin R. Oswald,
- Abstract summary: We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation.
Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos.
- Score: 24.160436463991495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation. Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos. To this end, we propose a novel effective strategy for seeding new Gaussians for newly explored areas and their effective online optimization that is independent of the scene size and thus scalable to larger scenes. This is achieved by organizing the scene into sub-maps which are independently optimized and do not need to be kept in memory. We further accomplish frame-to-model camera tracking by minimizing photometric and geometric losses between the input and rendered frames. The Gaussian representation allows for high-quality photo-realistic real-time rendering of real-world scenes. Evaluation on synthetic and real-world datasets demonstrates competitive or superior performance in mapping, tracking, and rendering compared to existing neural dense SLAM methods.
Related papers
- CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM [2.894006173981735]
CaRtGS is a novel method enhancing the efficiency and quality of photorealistic scene reconstruction in real-time environments.
Our approach tackles computational misalignment in Gaussian Splatting SLAM (GS-SLAM) through an adaptive strategy.
Experiments on Replica and TUM-RGBD demonstrate CaRtGS's effectiveness in achieving high-fidelity rendering datasets.
arXiv Detail & Related papers (2024-10-01T08:18:12Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
We propose an adaptive depth loss based on the gradient of color images, improving depth estimation and novel view synthesis results over various baselines.
Our simple yet effective regularization technique enables direct mesh extraction from the Gaussian representation, yielding more physically accurate reconstructions of indoor scenes.
arXiv Detail & Related papers (2024-03-26T16:00:31Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
We propose a physically-motivated deep learning framework to solve the indoor lighting estimation problem.
Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position.
Our framework achieves photorealistic lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods.
arXiv Detail & Related papers (2023-05-07T20:36:29Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAM is a dense RGB SLAM system that simultaneously optimize for camera poses and a hierarchical neural implicit map representation.
We show strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems.
arXiv Detail & Related papers (2023-02-07T17:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.