CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM
- URL: http://arxiv.org/abs/2410.00486v2
- Date: Wed, 2 Oct 2024 14:07:56 GMT
- Title: CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM
- Authors: Dapeng Feng, Zhiqiang Chen, Yizhen Yin, Shipeng Zhong, Yuhua Qi, Hongbo Chen,
- Abstract summary: CaRtGS is a novel method enhancing the efficiency and quality of photorealistic scene reconstruction in real-time environments.
Our approach tackles computational misalignment in Gaussian Splatting SLAM (GS-SLAM) through an adaptive strategy.
Experiments on Replica and TUM-RGBD demonstrate CaRtGS's effectiveness in achieving high-fidelity rendering datasets.
- Score: 2.894006173981735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) is pivotal in robotics, with photorealistic scene reconstruction emerging as a key challenge. To address this, we introduce Computational Alignment for Real-Time Gaussian Splatting SLAM (CaRtGS), a novel method enhancing the efficiency and quality of photorealistic scene reconstruction in real-time environments. Leveraging 3D Gaussian Splatting (3DGS), CaRtGS achieves superior rendering quality and processing speed, which is crucial for scene photorealistic reconstruction. Our approach tackles computational misalignment in Gaussian Splatting SLAM (GS-SLAM) through an adaptive strategy that optimizes training, addresses long-tail optimization, and refines densification. Experiments on Replica and TUM-RGBD datasets demonstrate CaRtGS's effectiveness in achieving high-fidelity rendering with fewer Gaussian primitives. This work propels SLAM towards real-time, photorealistic dense rendering, significantly advancing photorealistic scene representation. For the benefit of the research community, we release the code on our project website: https://dapengfeng.github.io/cartgs.
Related papers
- IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians [64.6687065215713]
CityGaussian employs a novel divide-and-conquer training approach and Level-of-Detail (LoD) strategy for efficient large-scale 3DGS training and rendering.
Our approach attains state-of-theart rendering quality, enabling consistent real-time rendering of largescale scenes across vastly different scales.
arXiv Detail & Related papers (2024-04-01T14:24:40Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussians is a novel approach to handle severe motion-blurred images with inaccurate camera poses.
Our method achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods.
arXiv Detail & Related papers (2024-03-18T14:43:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene
Reconstruction [36.35631592019182]
We introduce EndoGaussian, a real-time endoscopic scene reconstruction framework built on 3D Gaussian Splatting (3DGS)
Our framework significantly boosts the rendering speed to a real-time level.
Experiments on public datasets demonstrate our efficacy against prior SOTAs in many aspects.
arXiv Detail & Related papers (2024-01-23T08:44:26Z) - Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting [24.160436463991495]
We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation.
Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos.
arXiv Detail & Related papers (2023-12-06T10:47:53Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.