Constrained Meta-Reinforcement Learning for Adaptable Safety Guarantee
with Differentiable Convex Programming
- URL: http://arxiv.org/abs/2312.10230v1
- Date: Fri, 15 Dec 2023 21:55:43 GMT
- Title: Constrained Meta-Reinforcement Learning for Adaptable Safety Guarantee
with Differentiable Convex Programming
- Authors: Minjae Cho and Chuangchuang Sun
- Abstract summary: This paper studies the unique challenges of ensuring safety in non-stationary environments by solving constrained problems through the lens of the meta-learning approach (learning-to-learn)
We first employ successive convex-constrained policy updates across multiple tasks with differentiable convexprogramming, which allows meta-learning in constrained scenarios by enabling end-to-end differentiation.
- Score: 4.825619788907192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite remarkable achievements in artificial intelligence, the deployability
of learning-enabled systems in high-stakes real-world environments still faces
persistent challenges. For example, in safety-critical domains like autonomous
driving, robotic manipulation, and healthcare, it is crucial not only to
achieve high performance but also to comply with given constraints.
Furthermore, adaptability becomes paramount in non-stationary domains, where
environmental parameters are subject to change. While safety and adaptability
are recognized as key qualities for the new generation of AI, current
approaches have not demonstrated effective adaptable performance in constrained
settings. Hence, this paper breaks new ground by studying the unique challenges
of ensuring safety in non-stationary environments by solving constrained
problems through the lens of the meta-learning approach (learning-to-learn).
While unconstrained meta-learning al-ready encounters complexities in
end-to-end differentiation of the loss due to the bi-level nature, its
constrained counterpart introduces an additional layer of difficulty, since the
constraints imposed on task-level updates complicate the differentiation
process. To address the issue, we first employ successive convex-constrained
policy updates across multiple tasks with differentiable convexprogramming,
which allows meta-learning in constrained scenarios by enabling end-to-end
differentiation. This approach empowers the agent to rapidly adapt to new tasks
under non-stationarity while ensuring compliance with safety constraints.
Related papers
- HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy.
arXiv Detail & Related papers (2024-05-28T11:41:41Z) - A CMDP-within-online framework for Meta-Safe Reinforcement Learning [23.57318558833378]
We study the problem of meta-safe reinforcement learning (Meta-SRL) through the CMDP-within-online framework.
We obtain task-averaged regret bounds for unseen (optimality gap) and constraint violations using gradient-based meta-learning.
We propose a meta-algorithm that performs inexact online learning on the upper bounds of within-task optimality gap and constraint violations.
arXiv Detail & Related papers (2024-05-26T15:28:42Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Self-Sustaining Multiple Access with Continual Deep Reinforcement
Learning for Dynamic Metaverse Applications [17.436875530809946]
The Metaverse is a new paradigm that aims to create a virtual environment consisting of numerous worlds, each of which will offer a different set of services.
To deal with such a dynamic and complex scenario, one potential approach is to adopt self-sustaining strategies.
This paper investigates the problem of multiple access in multi-channel environments to maximize the throughput of the intelligent agent.
arXiv Detail & Related papers (2023-09-18T22:02:47Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Maximum Causal Entropy Inverse Constrained Reinforcement Learning [3.409089945290584]
We propose a novel method that utilizes the principle of maximum causal entropy to learn constraints and an optimal policy.
We evaluate the effectiveness of the learned policy by assessing the reward received and the number of constraint violations.
Our method has been shown to outperform state-of-the-art approaches across a variety of tasks and environments.
arXiv Detail & Related papers (2023-05-04T14:18:19Z) - Safety-Constrained Policy Transfer with Successor Features [19.754549649781644]
We propose a Constrained Markov Decision Process (CMDP) formulation that enables the transfer of policies and adherence to safety constraints.
Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation.
Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
arXiv Detail & Related papers (2022-11-10T06:06:36Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - One Solution is Not All You Need: Few-Shot Extrapolation via Structured
MaxEnt RL [142.36621929739707]
We show that learning diverse behaviors for accomplishing a task can lead to behavior that generalizes to varying environments.
By identifying multiple solutions for the task in a single environment during training, our approach can generalize to new situations.
arXiv Detail & Related papers (2020-10-27T17:41:57Z) - Safe Active Dynamics Learning and Control: A Sequential
Exploration-Exploitation Framework [30.58186749790728]
We propose a theoretically-justified approach to maintaining safety in the presence of dynamics uncertainty.
Our framework guarantees the high-probability satisfaction of all constraints at all times jointly.
This theoretical analysis also motivates two regularizers of last-layer meta-learning models that improve online adaptation capabilities.
arXiv Detail & Related papers (2020-08-26T17:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.