STELLAR: Siamese Multi-Headed Attention Neural Networks for Overcoming
Temporal Variations and Device Heterogeneity with Indoor Localization
- URL: http://arxiv.org/abs/2312.10312v1
- Date: Sat, 16 Dec 2023 04:12:36 GMT
- Title: STELLAR: Siamese Multi-Headed Attention Neural Networks for Overcoming
Temporal Variations and Device Heterogeneity with Indoor Localization
- Authors: Danish Gufran, Saideep Tiku, and Sudeep Pasricha
- Abstract summary: Smartphone-based indoor localization has emerged as a cost-effective and accurate solution to localize mobile and IoT devices indoors.
We propose STELLAR, a novel framework implementing a contrastive learning approach.
We show 8-75% improvements in accuracy compared to state-of-the-art techniques.
- Score: 2.9699290794642366
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Smartphone-based indoor localization has emerged as a cost-effective and
accurate solution to localize mobile and IoT devices indoors. However, the
challenges of device heterogeneity and temporal variations have hindered its
widespread adoption and accuracy. Towards jointly addressing these challenges
comprehensively, we propose STELLAR, a novel framework implementing a
contrastive learning approach that leverages a Siamese multi-headed attention
neural network. STELLAR is the first solution that simultaneously tackles
device heterogeneity and temporal variations in indoor localization, without
the need for retraining the model (re-calibration-free). Our evaluations across
diverse indoor environments show 8-75% improvements in accuracy compared to
state-of-the-art techniques, to effectively address the device heterogeneity
challenge. Moreover, STELLAR outperforms existing methods by 18-165% over 2
years of temporal variations, showcasing its robustness and adaptability.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Compute-in-Memory based Neural Network Accelerators for Safety-Critical
Systems: Worst-Case Scenarios and Protections [8.813981342105151]
We study the problem of pinpointing the worst-case performance of CiM accelerators affected by device variations.
We propose a novel worst-case-aware training technique named A-TRICE that efficiently combines adversarial training and noise-injection training.
Our experimental results demonstrate that A-TRICE improves the worst-case accuracy under device variations by up to 33%.
arXiv Detail & Related papers (2023-12-11T05:56:00Z) - CALLOC: Curriculum Adversarial Learning for Secure and Robust Indoor
Localization [3.943289808718775]
We introduce CALLOC, a novel framework designed to resist adversarial attacks and variations across indoor environments and devices.
CALLOC employs a novel adaptive curriculum learning approach with a domain specific lightweight scaled-dot product attention neural network.
We show that CALLOC can achieve improvements of up to 6.03x in mean error and 4.6x in worst-case error against state-of-the-art indoor localization frameworks.
arXiv Detail & Related papers (2023-11-10T19:26:31Z) - Federated Learning for Computationally-Constrained Heterogeneous
Devices: A Survey [3.219812767529503]
Federated learning (FL) offers a privacy-preserving trade-off between communication overhead and model accuracy.
We outline the challengesFL has to overcome to be widely applicable in real-world applications.
arXiv Detail & Related papers (2023-07-18T12:05:36Z) - PointFix: Learning to Fix Domain Bias for Robust Online Stereo
Adaptation [67.41325356479229]
We propose to incorporate an auxiliary point-selective network into a meta-learning framework, called PointFix.
In a nutshell, our auxiliary network learns to fix local variants intensively by effectively back-propagating local information through the meta-gradient.
This network is model-agnostic, so can be used in any kind of architectures in a plug-and-play manner.
arXiv Detail & Related papers (2022-07-27T07:48:29Z) - Multi-Head Attention Neural Network for Smartphone Invariant Indoor
Localization [3.577310844634503]
Smartphones together with RSSI fingerprinting serve as an efficient approach for delivering a low-cost and high-accuracy indoor localization solution.
We propose a multi-head attention neural network-based indoor localization framework that is resilient to device heterogeneity.
An in-depth analysis of our proposed framework demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
arXiv Detail & Related papers (2022-05-17T03:08:09Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - Siamese Neural Encoders for Long-Term Indoor Localization with Mobile
Devices [5.063728016437489]
Fingerprinting-based indoor localization is an emerging application domain for enhanced positioning and tracking of people and assets within indoor locales.
We propose a Siamese neural encoder-based framework that offers up to 40% reduction in degradation of localization accuracy over time compared to the state-of-the-art in the area.
arXiv Detail & Related papers (2021-11-28T07:22:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.