Smooth Handovers via Smoothed Online Learning
- URL: http://arxiv.org/abs/2501.08099v1
- Date: Tue, 14 Jan 2025 13:16:33 GMT
- Title: Smooth Handovers via Smoothed Online Learning
- Authors: Michail Kalntis, Andra Lutu, Jesús Omaña Iglesias, Fernando A. Kuipers, George Iosifidis,
- Abstract summary: We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs.
Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices.
We propose a realistic system model for smooth and accurate HOs that extends existing approaches by incorporating device and cell features on HO optimization.
- Score: 48.953313950521746
- License:
- Abstract: With users demanding seamless connectivity, handovers (HOs) have become a fundamental element of cellular networks. However, optimizing HOs is a challenging problem, further exacerbated by the growing complexity of mobile networks. This paper presents the first countrywide study of HO optimization, through the prism of Smoothed Online Learning (SOL). We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs. Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices, showcasing the impact of heterogeneity in mobile networks nowadays. We subsequently model UE-cell associations as dynamic decisions and propose a realistic system model for smooth and accurate HOs that extends existing approaches by (i) incorporating device and cell features on HO optimization, and (ii) eliminating (prior) strong assumptions about requiring future signal measurements and knowledge of end-user mobility. Our algorithm, aligned with the O-RAN paradigm, provides robust dynamic regret guarantees, even in challenging environments, and shows superior performance in multiple scenarios with real-world and synthetic data.
Related papers
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Towards Energy-Aware Federated Traffic Prediction for Cellular Networks [2.360352205004026]
We propose a novel sustainability indicator that allows assessing the feasibility of machine learning (ML) models.
We evaluate state-of-the-art deep learning (DL) architectures in a federated scenario using real-world measurements from base station (BS) sites in the area of Barcelona, Spain.
Our findings indicate that larger ML models achieve marginally improved performance but have a significant environmental impact in terms of carbon footprint.
arXiv Detail & Related papers (2023-09-19T14:28:09Z) - Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter
Configuration in Cellular Network [47.29123145759976]
We propose a learning-based framework for handover parameter configuration.
First, we introduce a novel approach to imitate how the network responds to different network states and parameter values.
During the parameter configuration stage, instead of solving the global optimization problem, we design a local multi-objective optimization strategy.
arXiv Detail & Related papers (2022-12-29T18:51:36Z) - Adapting to Dynamic LEO-B5G Systems: Meta-Critic Learning Based
Efficient Resource Scheduling [38.733584547351796]
We address two practical issues for an over-loaded LEO-terrestrial system.
The first challenge is how to efficiently schedule resources to serve the massive number of connected users.
The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments.
arXiv Detail & Related papers (2021-10-13T15:21:38Z) - Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning [0.5758073912084364]
We propose an adaptive offloading solution based on the Reinforcement Learning framework.
We evaluate and compare the performance of two well-known learning algorithms: Actor-Critic and Q-Learning.
Our solution achieves a higher level of offloading with respect to other state-of-the-art approaches.
arXiv Detail & Related papers (2021-10-01T13:34:12Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.