A deep learning model for data-driven discovery of functional
connectivity
- URL: http://arxiv.org/abs/2112.04013v1
- Date: Tue, 7 Dec 2021 21:57:32 GMT
- Title: A deep learning model for data-driven discovery of functional
connectivity
- Authors: Usman Mahmood, Zening Fu, Vince Calhoun, Sergey Plis
- Abstract summary: We propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects.
We demonstrate the model's state-of-the-art classification performance on a schizophrenia fMRI dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Functional connectivity (FC) studies have demonstrated the overarching value
of studying the brain and its disorders through the undirected weighted graph
of fMRI correlation matrix. Most of the work with the FC, however, depends on
the way the connectivity is computed, and further depends on the manual
post-hoc analysis of the FC matrices. In this work we propose a deep learning
architecture BrainGNN that learns the connectivity structure as part of
learning to classify subjects. It simultaneously applies a graphical neural
network to this learned graph and learns to select a sparse subset of brain
regions important to the prediction task. We demonstrate the model's
state-of-the-art classification performance on a schizophrenia fMRI dataset and
demonstrate how introspection leads to disorder relevant findings. The graphs
learned by the model exhibit strong class discrimination and the sparse subset
of relevant regions are consistent with the schizophrenia literature.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Interpretable Fusion Analytics Framework for fMRI Connectivity: Self-Attention Mechanism and Latent Space Item-Response Model [0.4893345190925178]
We propose a novel analytical framework that interprets the classification result from deep learning processes.
The application of this proposed framework to the four types of cognitive impairment shows that our approach is valid for determining the significant ROI functions.
arXiv Detail & Related papers (2022-07-04T17:01:18Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - Graph Autoencoders for Embedding Learning in Brain Networks and Major
Depressive Disorder Identification [13.907981019956832]
We propose a graph deep learning framework to incorporate the non-Euclidean information about graph structure for classifying brain networks in major depressive disorder (MDD)
We design a novel graph autoencoder (GAE) architecture based on the graph convolutional networks (GCNs) to embed the topological structure and node content of large-sized fMRI networks into low-dimensional latent representations.
Our new framework demonstrates feasibility of learning graph embeddings on brain networks to provide discriminative information for diagnosis of brain disorders.
arXiv Detail & Related papers (2021-07-27T14:12:39Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.