Convergence and complexity of block majorization-minimization for constrained block-Riemannian optimization
- URL: http://arxiv.org/abs/2312.10330v2
- Date: Tue, 6 Aug 2024 23:41:19 GMT
- Title: Convergence and complexity of block majorization-minimization for constrained block-Riemannian optimization
- Authors: Yuchen Li, Laura Balzano, Deanna Needell, Hanbaek Lyu,
- Abstract summary: Blockization-minimization (BMM) is a simple iterative gradient for non-exhaustive subspace estimation.
Our analysis makes explicit use of Euclidian constraints.
- Score: 18.425648833592312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex optimization that sequentially minimizes a majorizing surrogate of the objective function in each block coordinate while the other block coordinates are held fixed. We consider a family of BMM algorithms for minimizing smooth nonconvex objectives, where each parameter block is constrained within a subset of a Riemannian manifold. We establish that this algorithm converges asymptotically to the set of stationary points, and attains an $\epsilon$-stationary point within $\widetilde{O}(\epsilon^{-2})$ iterations. In particular, the assumptions for our complexity results are completely Euclidean when the underlying manifold is a product of Euclidean or Stiefel manifolds, although our analysis makes explicit use of the Riemannian geometry. Our general analysis applies to a wide range of algorithms with Riemannian constraints: Riemannian MM, block projected gradient descent, optimistic likelihood estimation, geodesically constrained subspace tracking, robust PCA, and Riemannian CP-dictionary-learning. We experimentally validate that our algorithm converges faster than standard Euclidean algorithms applied to the Riemannian setting.
Related papers
- Riemannian Bilevel Optimization [35.42472057648458]
We focus in particular on batch and gradient-based methods, with the explicit goal of avoiding second-order information.
We propose and analyze $mathrmRF2SA$, a method that leverages first-order gradient information.
We provide explicit convergence rates for reaching $epsilon$-stationary points under various setups.
arXiv Detail & Related papers (2024-05-22T20:49:01Z) - Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms [18.425648833592312]
We show that tBMM converges to an $ilon$-stationary point within $O(epsilon-2)$.
Under a mild iteration, the results still hold when the subproblem is solved in iterations in each provided the total optimality gap is bounded.
arXiv Detail & Related papers (2024-05-05T22:53:14Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms [19.99781875916751]
We show that textttZo-RASA achieves optimal sample complexities for generating $epsilon$-approximation first-order stationary solutions.
We improve the algorithm's practicality by using geometrics and vector transport, instead of exponential mappings and parallel transports.
arXiv Detail & Related papers (2023-09-25T20:13:36Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
The minimax algorithms for neural networks have been developed to solve many problems.
In this paper, we propose two types of minimax algorithms.
For the setting, we propose DRSGDA and prove that our method achieves a gradient.
arXiv Detail & Related papers (2023-02-08T01:42:45Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Block majorization-minimization with diminishing radius for constrained
nonconvex optimization [9.907540661545328]
Block tensor regularization-minimization (BMM) is a simple iterative algorithm for non constrained optimization that minimizes major surrogates in each block.
We show that BMM can produce a gradient $O(epsilon-2(logepsilon-1)2)$ when convex surrogates are used.
arXiv Detail & Related papers (2020-12-07T07:53:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.