Fusing Conditional Submodular GAN and Programmatic Weak Supervision
- URL: http://arxiv.org/abs/2312.10366v1
- Date: Sat, 16 Dec 2023 07:49:13 GMT
- Title: Fusing Conditional Submodular GAN and Programmatic Weak Supervision
- Authors: Kumar Shubham, Pranav Sastry, Prathosh AP
- Abstract summary: Programmatic Weak Supervision (PWS) and generative models serve as crucial tools to maximize the utility of existing datasets without resorting to data gathering and manual annotation processes.
PWS uses various weak supervision techniques to estimate the underlying class labels of data, while generative models primarily concentrate on sampling from the underlying distribution of the given dataset.
Recently, WSGAN proposed a mechanism to fuse these two models.
- Score: 5.300742881753571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Programmatic Weak Supervision (PWS) and generative models serve as crucial
tools that enable researchers to maximize the utility of existing datasets
without resorting to laborious data gathering and manual annotation processes.
PWS uses various weak supervision techniques to estimate the underlying class
labels of data, while generative models primarily concentrate on sampling from
the underlying distribution of the given dataset. Although these methods have
the potential to complement each other, they have mostly been studied
independently. Recently, WSGAN proposed a mechanism to fuse these two models.
Their approach utilizes the discrete latent factors of InfoGAN to train the
label model and leverages the class-dependent information of the label model to
generate images of specific classes. However, the disentangled latent factors
learned by InfoGAN might not necessarily be class-specific and could
potentially affect the label model's accuracy. Moreover, prediction made by the
label model is often noisy in nature and can have a detrimental impact on the
quality of images generated by GAN. In our work, we address these challenges by
(i) implementing a noise-aware classifier using the pseudo labels generated by
the label model (ii) utilizing the noise-aware classifier's prediction to train
the label model and generate class-conditional images. Additionally, we also
investigate the effect of training the classifier with a subset of the dataset
within a defined uncertainty budget on pseudo labels. We accomplish this by
formalizing the subset selection problem as a submodular maximization objective
with a knapsack constraint on the entropy of pseudo labels. We conduct
experiments on multiple datasets and demonstrate the efficacy of our methods on
several tasks vis-a-vis the current state-of-the-art methods.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Label-Noise Robust Diffusion Models [18.82847557713331]
Conditional diffusion models have shown remarkable performance in various generative tasks.
Training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels.
This paper proposes Transition-aware weighted Denoising Score Matching for training conditional diffusion models with noisy labels.
arXiv Detail & Related papers (2024-02-27T14:00:34Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
This paper proposes a probabilistic model for noisy observations that allows us to build a confident classification and segmentation models.
Our experiments show that our algorithm outperforms state-of-the-art solutions for the considered classification and segmentation problems.
arXiv Detail & Related papers (2023-01-02T04:27:25Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) has emerged as a widespread paradigm to synthesize training labels efficiently.
The core component of PWS is the label model, which infers true labels by aggregating the outputs of multiple noisy supervision sources as labeling functions.
Existing statistical label models typically rely only on the outputs of LF, ignoring the instance features when modeling the underlying generative process.
arXiv Detail & Related papers (2022-10-06T07:28:53Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
We propose Transductive CLIP, a novel framework for learning a classification network with noisy labels from scratch.
A class-conditional contrastive learning mechanism is proposed to mitigate the reliance on pseudo labels.
ensemble labels is adopted as a pseudo label updating strategy to stabilize the training of deep neural networks with noisy labels.
arXiv Detail & Related papers (2022-06-13T14:04:57Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.