Label-Noise Robust Diffusion Models
- URL: http://arxiv.org/abs/2402.17517v1
- Date: Tue, 27 Feb 2024 14:00:34 GMT
- Title: Label-Noise Robust Diffusion Models
- Authors: Byeonghu Na, Yeongmin Kim, HeeSun Bae, Jung Hyun Lee, Se Jung Kwon,
Wanmo Kang, Il-Chul Moon
- Abstract summary: Conditional diffusion models have shown remarkable performance in various generative tasks.
Training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels.
This paper proposes Transition-aware weighted Denoising Score Matching for training conditional diffusion models with noisy labels.
- Score: 18.82847557713331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional diffusion models have shown remarkable performance in various
generative tasks, but training them requires large-scale datasets that often
contain noise in conditional inputs, a.k.a. noisy labels. This noise leads to
condition mismatch and quality degradation of generated data. This paper
proposes Transition-aware weighted Denoising Score Matching (TDSM) for training
conditional diffusion models with noisy labels, which is the first study in the
line of diffusion models. The TDSM objective contains a weighted sum of score
networks, incorporating instance-wise and time-dependent label transition
probabilities. We introduce a transition-aware weight estimator, which
leverages a time-dependent noisy-label classifier distinctively customized to
the diffusion process. Through experiments across various datasets and noisy
label settings, TDSM improves the quality of generated samples aligned with
given conditions. Furthermore, our method improves generation performance even
on prevalent benchmark datasets, which implies the potential noisy labels and
their risk of generative model learning. Finally, we show the improved
performance of TDSM on top of conventional noisy label corrections, which
empirically proving its contribution as a part of label-noise robust generative
models. Our code is available at: https://github.com/byeonghu-na/tdsm.
Related papers
- Learning under Label Noise through Few-Shot Human-in-the-Loop Refinement [37.4838454216137]
Few-Shot Human-in-the-Loop Refinement (FHLR) is a novel solution to address noisy label learning.
We show that FHLR achieves significantly better performance when learning from noisy labels.
Our work not only achieves better generalization in high-stakes health sensing benchmarks but also sheds light on how noise affects commonly-used models.
arXiv Detail & Related papers (2024-01-25T11:43:35Z) - Fusing Conditional Submodular GAN and Programmatic Weak Supervision [5.300742881753571]
Programmatic Weak Supervision (PWS) and generative models serve as crucial tools to maximize the utility of existing datasets without resorting to data gathering and manual annotation processes.
PWS uses various weak supervision techniques to estimate the underlying class labels of data, while generative models primarily concentrate on sampling from the underlying distribution of the given dataset.
Recently, WSGAN proposed a mechanism to fuse these two models.
arXiv Detail & Related papers (2023-12-16T07:49:13Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels [86.5943044285146]
The label noise transition matrix $T$ reflects the probabilities that true labels flip into noisy ones.
In this paper, we focus on learning under the mixed closed-set and open-set label noise.
Our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.
arXiv Detail & Related papers (2020-12-02T02:42:45Z) - GANs for learning from very high class conditional noisy labels [1.6516902135723865]
We use Generative Adversarial Networks (GANs) to design a class conditional label noise (CCN) robust scheme for binary classification.
It first generates a set of correctly labelled data points from noisy labelled data and 0.1% or 1% clean labels.
arXiv Detail & Related papers (2020-10-19T15:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.