論文の概要: K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning
- arxiv url: http://arxiv.org/abs/2312.10371v1
- Date: Sat, 16 Dec 2023 08:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 16:50:14.644030
- Title: K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning
- Title(参考訳): K-ESConv: プロンプト学習による感情支援対話システムのための知識注入
- Authors: Wei Chen, Gang Zhao, Xiaojin Zhang, Xiang Bai, Xuanjing Huang, Zhongyu
Wei
- Abstract要約: K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
- 参考スコア(独自算出の注目度): 83.19215082550163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic psychological counseling requires mass of professional knowledge
that can be found in online counseling forums. Motivated by this, we propose
K-ESConv, a novel prompt learning based knowledge injection method for
emotional support dialogue system, transferring forum knowledge to response
generation. We evaluate our model on an emotional support dataset ESConv, where
the model retrieves and incorporates knowledge from external professional
emotional Q\&A forum. Experiment results show that the proposed method
outperforms existing baselines on both automatic evaluation and human
evaluation, which shows that our approach significantly improves the
correlation and diversity of responses and provides more comfort and better
suggestion for the seeker.
- Abstract(参考訳): 自動心理カウンセリングには、オンラインカウンセリングフォーラムで見られる専門知識の大量を必要とする。
そこで本研究では,感情支援対話システムのための新たな学習ベース知識注入手法であるK-ESConvを提案する。
我々は,感情支援データセットesconv上でのモデル評価を行い,外部の職業的感情的q\&aフォーラムから知識を抽出・取り入れる。
実験の結果, 提案手法は, 自動評価と人間評価の両方において, 既存のベースラインを上回っており, 応答の相関性と多様性が著しく向上し, 探索者にとってより快適でより良い提案が得られた。
関連論文リスト
- Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
我々は,認知行動療法(Cognitive Behavioral Therapy, CBT)の目標指向的, 構造化的アプローチを用いて, 実生活インタラクションをエミュレートする多ターン対話データセットを作成する。
我々は、実際のカウンセリングセッションの評価、専門家の評価との整合性の確保に使用される確立された心理学的基準をベンチマークする。
Cactusで訓練されたモデルであるCamelはカウンセリングスキルにおいて他のモデルよりも優れており、カウンセリングエージェントとしての有効性と可能性を強調している。
論文 参考訳(メタデータ) (2024-07-03T13:41:31Z) - CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling [27.193022503592342]
中国における心理カウンセリングのための多面的対話再構築・評価フレームワークCPsyCounを提案する。
心理カウンセリングレポートを完全に活用するために、高品質な対話を構築するための2段階のアプローチが考案された。
マルチターン心理相談の効果的な自動評価のための総合評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-05-26T05:18:00Z) - Dynamic Demonstration Retrieval and Cognitive Understanding for Emotional Support Conversation [35.49338831485202]
ESCにおける2つの重要な課題は、文脈的関連性および共感的応答生成の促進と認知的理解の促進である。
私たちの仕事は、ESCで提供されるサポートの品質を改善するためにこれらの要素を相乗化するための新しいアプローチです。
私たちのコードは、さらなる研究と開発を促進するために、パブリックアクセスが可能です。
論文 参考訳(メタデータ) (2024-04-03T06:47:15Z) - COCOA: CBT-based Conversational Counseling Agent using Memory
Specialized in Cognitive Distortions and Dynamic Prompt [13.763448771196456]
本研究では,認知行動療法(CBT)を応用した心理カウンセリングエージェントを開発した。
クライアントに関する高レベルな洞察を抽出しながら,カウンセリングに必要な情報を効率的に管理するメモリシステムを構築した。
論文 参考訳(メタデータ) (2024-02-27T14:38:47Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Facilitating Multi-turn Emotional Support Conversation with Positive
Emotion Elicitation: A Reinforcement Learning Approach [58.88422314998018]
感情支援会話(ESC)は、精神状態を改善するための感情支援(ES)を提供することを目的としている。
既存の作業は、ESへの影響を無視し、感情的なポジティブな移行を導くための明確な目標が欠如している、接地された応答と対応戦略に留まっている。
マルチターンESCを肯定的感情誘発のプロセスとして定式化する新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2023-07-16T09:58:44Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。