論文の概要: VecFusion: Vector Font Generation with Diffusion
- arxiv url: http://arxiv.org/abs/2312.10540v1
- Date: Sat, 16 Dec 2023 20:49:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 16:09:52.405310
- Title: VecFusion: Vector Font Generation with Diffusion
- Title(参考訳): VecFusion:拡散によるベクトルフォント生成
- Authors: Vikas Thamizharasan, Difan Liu, Shantanu Agarwal, Matthew Fisher,
Michael Gharbi, Oliver Wang, Alec Jacobson and Evangelos Kalogerakis
- Abstract要約: 我々はベクトル構造と正確な制御点位置を生成できる新しいニューラルネットワークであるVecFusionを提案する。
従来のベクトルグラフィックス生成モデルとは対照的に、我々の新しいカスケードベクトル拡散モデルは複雑な構造と多様なスタイルを持つ高品質なベクトルフォントを生成する。
- 参考スコア(独自算出の注目度): 46.592724656888755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present VecFusion, a new neural architecture that can generate vector
fonts with varying topological structures and precise control point positions.
Our approach is a cascaded diffusion model which consists of a raster diffusion
model followed by a vector diffusion model. The raster model generates
low-resolution, rasterized fonts with auxiliary control point information,
capturing the global style and shape of the font, while the vector model
synthesizes vector fonts conditioned on the low-resolution raster fonts from
the first stage. To synthesize long and complex curves, our vector diffusion
model uses a transformer architecture and a novel vector representation that
enables the modeling of diverse vector geometry and the precise prediction of
control points. Our experiments show that, in contrast to previous generative
models for vector graphics, our new cascaded vector diffusion model generates
higher quality vector fonts, with complex structures and diverse styles.
- Abstract(参考訳): 本稿では,異なる位相構造と正確な制御点位置を持つベクトルフォントを生成可能な新しいニューラルネットワークであるVecFusionを提案する。
提案手法は,ラスタ拡散モデルとベクトル拡散モデルからなるカスケード拡散モデルである。
ラスタモデルは、補助制御点情報付き低解像度ラスタ化フォントを生成し、フォントのグローバルなスタイルと形状をキャプチャし、ベクターモデルは、第1段階から低解像度ラスタ化フォントに条件付ベクターフォントを合成する。
長大かつ複素曲線を合成するために, ベクトル拡散モデルは, 多様なベクトル幾何のモデリングと制御点の精密な予測を可能にするトランスフォーマアーキテクチャと新しいベクトル表現を用いる。
従来のベクトルグラフィックス生成モデルとは対照的に,我々の新しいカスケードベクトル拡散モデルは,複雑な構造と多様なスタイルを持つ高品質なベクトルフォントを生成する。
関連論文リスト
- Segmentation-guided Layer-wise Image Vectorization with Gradient Fills [6.037332707968933]
そこで本稿では,画像を勾配を埋め込んだ簡潔なベクトルグラフに変換するためのセグメンテーション誘導ベクトル化フレームワークを提案する。
組込み勾配認識セグメンテーションの指導により, 段階的に勾配を埋め込んだB'ezierパスを出力に付加する。
論文 参考訳(メタデータ) (2024-08-28T12:08:25Z) - An Intrinsic Vector Heat Network [64.55434397799728]
本稿では,3次元に埋め込まれた接ベクトル場を学習するためのニューラルネットワークアーキテクチャを提案する。
本研究では, ベクトル値の特徴データを空間的に伝播させるために, トレーニング可能なベクトル熱拡散モジュールを提案する。
また,四面体メッシュ生成の産業的有用性に対する本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-14T00:40:31Z) - DualVector: Unsupervised Vector Font Synthesis with Dual-Part
Representation [43.64428946288288]
現在のフォント合成法では、形状を簡潔に表現できないか、訓練中にベクトル監督を必要とする。
ベクトルグリフに対する新しい双対表現を提案し、各グリフは閉「正」経路対と「負」経路対の集合としてモデル化される。
我々の手法はDual-of-Font-artと呼ばれ、最先端の手法よりも実用性が高い。
論文 参考訳(メタデータ) (2023-05-17T08:18:06Z) - DeepVecFont-v2: Exploiting Transformers to Synthesize Vector Fonts with
Higher Quality [38.32966391626858]
本稿では,ベクトルフォント合成のためのDeepVecFontの拡張版を提案する。
RNNの代わりにTransformerを採用して逐次データ処理を行い、ベクトルアウトラインの緩和表現を設計する。
また,生成したB'ezier曲線や線を正確に整列する制御点に加えて,補助点のサンプリングも提案する。
論文 参考訳(メタデータ) (2023-03-25T23:28:19Z) - VecFontSDF: Learning to Reconstruct and Synthesize High-quality Vector
Fonts via Signed Distance Functions [15.47282857047361]
本稿では,高品質なベクトルフォントの再構成と合成を行うために,エンドツーエンドのトレーニング可能なVecFontSDFを提案する。
提案したSDFに基づく暗黙的形状表現に基づいて、VecFontSDFは、各グリフを複数のパラボラ曲線で囲まれた形状プリミティブとしてモデル化することを学ぶ。
論文 参考訳(メタデータ) (2023-03-22T16:14:39Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
Diff-Fontという拡散モデルに基づく新しいワンショットフォント生成手法を提案する。
提案するモデルは,フォントライブラリ全体を生成することを目的として,参照として1つのサンプルのみを与える。
十分に訓練されたDiff-Fontは、フォントギャップやフォントのバリエーションに対して堅牢であるだけでなく、難しい文字生成において有望なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-12-12T13:51:50Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality
Learning [21.123297001902177]
本稿では,ベクトルグリフを生成するための新しい手法であるDeepVecFontを提案する。
まず、フォントのイメージ・アスペクトとシーケンス・アスペクトの両特徴を利用してベクトルグリフを合成する双対モダリティ学習戦略を設計する。
第2に、非構造化データ(例えばベクトルグリフ)をランダムにサンプリングして、生成した構造化データのガイダンスの下でさらに洗練された最適なデータを得る、新しい生成パラダイムを提供する。
論文 参考訳(メタデータ) (2021-10-13T12:57:19Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
タイポグラフィー解析とフォント再構成を行う深層生成モデルを提案する。
このアプローチによって、効果的にモデル化できるキャラクタの種類を大規模にスケールアップすることが可能になります。
多くの言語の文字タイプを表す様々なデータセット上でフォント再構成のタスクを評価する。
論文 参考訳(メタデータ) (2021-09-10T20:37:43Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。