Learning graphs and simplicial complexes from data
- URL: http://arxiv.org/abs/2312.10545v1
- Date: Sat, 16 Dec 2023 22:02:20 GMT
- Title: Learning graphs and simplicial complexes from data
- Authors: Andrei Buciulea, Elvin Isufi, Geert Leus, and Antonio G. Marques
- Abstract summary: We present a novel method to infer the underlying graph topology from available data.
We also identify three-node interactions, referred to in the literature as second-order simplicial complexes (SCs)
Experimental results on synthetic and real-world data showcase a superior performance for our approach compared to existing methods.
- Score: 26.926502862698168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are widely used to represent complex information and signal domains
with irregular support. Typically, the underlying graph topology is unknown and
must be estimated from the available data. Common approaches assume pairwise
node interactions and infer the graph topology based on this premise. In
contrast, our novel method not only unveils the graph topology but also
identifies three-node interactions, referred to in the literature as
second-order simplicial complexes (SCs). We model signals using a graph
autoregressive Volterra framework, enhancing it with structured graph Volterra
kernels to learn SCs. We propose a mathematical formulation for graph and SC
inference, solving it through convex optimization involving group norms and
mask matrices. Experimental results on synthetic and real-world data showcase a
superior performance for our approach compared to existing methods.
Related papers
- Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
Current Graph Neural Networks (GNN) architectures rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling.
We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation.
This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance.
arXiv Detail & Related papers (2022-05-31T12:24:01Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Graph-Time Convolutional Neural Networks [9.137554315375919]
We represent spatial relationships through product graphs with a first principle graph-time convolutional neural network (GTCNN)
We develop a graph-time convolutional filter by following the shift-and-sumtemporal operator to learn higher-level features over the product graph.
We develop a zero-pad pooling that preserves the spatial graph while reducing the number of active nodes and the parameters.
arXiv Detail & Related papers (2021-03-02T14:03:44Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Signal Processing -- Part III: Machine Learning on Graphs, from
Graph Topology to Applications [19.29066508374268]
Part III of this monograph starts by addressing ways to learn graph topology.
A particular emphasis is on graph topology definition based on the correlation and precision matrices of the observed data.
For learning sparse graphs, the least absolute shrinkage and selection operator, known as LASSO is employed.
arXiv Detail & Related papers (2020-01-02T13:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.