A Survey on Query-based API Recommendation
- URL: http://arxiv.org/abs/2312.10623v3
- Date: Sat, 27 Jan 2024 04:52:34 GMT
- Title: A Survey on Query-based API Recommendation
- Authors: Moshi Wei, Nima Shiri Harzevili, Alvine Boaye Belle, Junjie Wang, Lin
Shi, Jinqiu Yang, Song Wang, Ming Zhen (Jack) Jiang
- Abstract summary: Application Programming Interfaces (APIs) are designed to help developers build software more effectively.
To understand this research domain, we have surveyed to analyze API recommendation studies published in the last 10 years.
- Score: 12.999521865816185
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Application Programming Interfaces (APIs) are designed to help developers
build software more effectively. Recommending the right APIs for specific tasks
has gained increasing attention among researchers and developers in recent
years. To comprehensively understand this research domain, we have surveyed to
analyze API recommendation studies published in the last 10 years. Our study
begins with an overview of the structure of API recommendation tools.
Subsequently, we systematically analyze prior research and pose four key
research questions. For RQ1, we examine the volume of published papers and the
venues in which these papers appear within the API recommendation field. In
RQ2, we categorize and summarize the prevalent data sources and collection
methods employed in API recommendation research. In RQ3, we explore the types
of data and common data representations utilized by API recommendation
approaches. We also investigate the typical data extraction procedures and
collection approaches employed by the existing approaches. RQ4 delves into the
modeling techniques employed by API recommendation approaches, encompassing
both statistical and deep learning models. Additionally, we compile an overview
of the prevalent ranking strategies and evaluation metrics used for assessing
API recommendation tools. Drawing from our survey findings, we identify current
challenges in API recommendation research that warrant further exploration,
along with potential avenues for future research.
Related papers
- A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - APIGen: Generative API Method Recommendation [16.541442856821]
APIGen is a generative API recommendation approach through enhanced in-context learning (ICL)
APIGen searches for similar posts to the programming queries from the lexical, syntactical, and semantic perspectives.
With the reasoning process, APIGen makes recommended APIs better meet the programming requirement of queries.
arXiv Detail & Related papers (2024-01-29T02:35:42Z) - APICom: Automatic API Completion via Prompt Learning and Adversarial
Training-based Data Augmentation [6.029137544885093]
API recommendation is the process of assisting developers in finding the required API among numerous candidate APIs.
Previous studies mainly modeled API recommendation as the recommendation task, and developers may not yet be able to find what they need.
Motivated by the neural machine translation research domain, we can model this problem as the generation task.
We propose a novel approach APICom based on prompt learning, which can generate API related to the query according to the prompts.
arXiv Detail & Related papers (2023-09-13T15:31:50Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - A Semi-Automated Solution Approach Recommender for a Given Use Case: a Case Study for AI/ML in Oncology via Scopus and OpenAI [0.6749750044497732]
Our proposed tool, SARBOLD-LLM, allows discovering and choosing among methods related to a given problem.
It provides additional information about their uses in the literature to derive decision-making insights.
It is a useful tool to select which methods to investigate first and comes as a complement to surveys.
arXiv Detail & Related papers (2023-07-10T14:07:28Z) - ARIST: An Effective API Argument Recommendation Approach [5.809490691177338]
We propose ARIST, a novel automated argument recommendation approach which suggests arguments by predicting developers' expectations.
In ARIST, the LMs and the recommending features are used to suggest the promising candidates identified by PA.
Our evaluation on a large dataset of real-world projects shows that ARIST improves the state-of-the-art approach by 19% and 18% in top-1 precision.
arXiv Detail & Related papers (2023-06-11T08:41:37Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
We evaluate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval.
We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English.
For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost.
arXiv Detail & Related papers (2023-05-10T16:40:52Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
Event extraction technology based on deep learning has become a research hotspot.
This paper fills the gap by reviewing the state-of-the-art approaches, focusing on deep learning-based models.
arXiv Detail & Related papers (2021-07-05T16:32:45Z) - Holistic Combination of Structural and Textual Code Information for
Context based API Recommendation [28.74546332681778]
We propose a novel API recommendation approach called APIRec-CST (API Recommendation by Combining Structural and Textual code information)
APIRec-CST is a deep learning model that combines the API usage with the text information in source code based on an API Graph Network and a Code Token Network.
We show that our approach achieves a top-5, top-10 accuracy and MRR of 60.3%, 81.5%, 87.7% and 69.4%, and significantly outperforms an existing graph-based statistical approach.
arXiv Detail & Related papers (2020-10-15T04:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.