論文の概要: Distinguishing Translations by Human, NMT, and ChatGPT: A Linguistic and Statistical Approach
- arxiv url: http://arxiv.org/abs/2312.10750v2
- Date: Sat, 12 Oct 2024 10:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:17.586777
- Title: Distinguishing Translations by Human, NMT, and ChatGPT: A Linguistic and Statistical Approach
- Title(参考訳): 人間、NMT、ChatGPTによる翻訳の廃止:言語学的および統計的アプローチ
- Authors: Zhaokun Jiang, Qianxi Lv, Ziyin Zhang, Lei Lei,
- Abstract要約: 本研究では,(1)NMTとヒト翻訳(HT)からのChatGPT生成翻訳の識別可能性,(2)翻訳タイプの言語的特徴,(3)ChatGPT生成翻訳とHT,あるいはNMTとの類似度について検討する。
- 参考スコア(独自算出の注目度): 1.6982207802596105
- License:
- Abstract: The growing popularity of neural machine translation (NMT) and LLMs represented by ChatGPT underscores the need for a deeper understanding of their distinct characteristics and relationships. Such understanding is crucial for language professionals and researchers to make informed decisions and tactful use of these cutting-edge translation technology, but remains underexplored. This study aims to fill this gap by investigating three key questions: (1) the distinguishability of ChatGPT-generated translations from NMT and human translation (HT), (2) the linguistic characteristics of each translation type, and (3) the degree of resemblance between ChatGPT-produced translations and HT or NMT. To achieve these objectives, we employ statistical testing, machine learning algorithms, and multidimensional analysis (MDA) to analyze Spokesperson's Remarks and their translations. After extracting a wide range of linguistic features, supervised classifiers demonstrate high accuracy in distinguishing the three translation types, whereas unsupervised clustering techniques do not yield satisfactory results. Another major finding is that ChatGPT-produced translations exhibit greater similarity with NMT than HT in most MDA dimensions, which is further corroborated by distance computing and visualization. These novel insights shed light on the interrelationships among the three translation types and have implications for the future advancements of NMT and generative AI.
- Abstract(参考訳): ニューラルネットワーク翻訳(NMT)や、ChatGPTで表されるLLMの普及は、それらの特徴と関係性をより深く理解する必要性を浮き彫りにしている。
このような理解は、言語専門家や研究者にとって、これらの最先端翻訳技術の情報的決定と正確な利用が不可欠であるが、まだ解明されていない。
本研究の目的は,(1) NMTとヒト翻訳(HT)からのChatGPT生成翻訳の識別可能性,(2)各翻訳の言語的特徴,(3) ChatGPT生成翻訳とHT,あるいはNMTとの類似度,という3つの重要な疑問に答えることで,このギャップを埋めることである。
これらの目的を達成するために、統計的テスト、機械学習アルゴリズム、多次元解析(MDA)を用いて、スポークスパーソンの発言とその翻訳を分析する。
幅広い言語的特徴を抽出した後、教師付き分類器は3つの翻訳タイプを区別する上で高い精度を示す一方、教師なしクラスタリング技術は良好な結果を出さない。
もう一つの大きな発見は、ChatGPTで生成された翻訳は、ほとんどのMDA次元において、HTよりもNMTとの類似性が高いことである。
これらの新たな洞察は、3つの翻訳タイプ間の相互関係に光を当て、NMTと生成AIの将来的な進歩に影響を及ぼす。
関連論文リスト
- The Comparison of Translationese in Machine Translation and Human Transation in terms of Translation Relations [7.776258153133857]
この研究は2つのパラレルコーパスを用いており、それぞれが9つのジャンルにまたがって、同じソーステキストで、1つはNMTによって翻訳され、もう1つは人間によって翻訳された。
以上の結果から,NMTはHTよりも翻訳に大きく依存していることが示唆された。
論文 参考訳(メタデータ) (2024-03-27T19:12:20Z) - An Empirical study of Unsupervised Neural Machine Translation: analyzing
NMT output, model's behavior and sentences' contribution [5.691028372215281]
Unsupervised Neural Machine Translation (UNMT) は、人間の翻訳された並列データがないと仮定して、NMTの結果を改善することに焦点を当てている。
私たちは、フランス語、グジャラーティ、カザフ語という3つの非常に多様な言語に焦点を合わせ、バイリンガルなNMTモデルを英語から英語に訓練し、様々なレベルの監督を行っている。
論文 参考訳(メタデータ) (2023-12-19T20:35:08Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Translation-Enhanced Multilingual Text-to-Image Generation [61.41730893884428]
テキスト・ツー・イメージ・ジェネレーション(TTI)の研究は、現在でも主に英語に焦点を当てている。
そこで本研究では,多言語TTIとニューラルマシン翻訳(NMT)のブートストラップmTTIシステムへの応用について検討する。
我々は,mTTIフレームワーク内で多言語テキスト知識を重み付け,統合する新しいパラメータ効率アプローチであるEnsemble Adapter (EnsAd)を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:03:52Z) - Do GPTs Produce Less Literal Translations? [20.095646048167612]
大規模言語モデル(LLM)は多くの自然言語生成や理解タスクに対処できる汎用言語モデルとして登場した。
GPTからの英語(E-X)からの翻訳はリテラルが低い傾向にあり、機械翻訳の品質指標に類似またはより良いスコアが示されることがわかりました。
論文 参考訳(メタデータ) (2023-05-26T10:38:31Z) - Discourse Centric Evaluation of Machine Translation with a Densely
Annotated Parallel Corpus [82.07304301996562]
本稿では,江らが導入した大規模並列コーパスBWBに基づいて,リッチな談話アノテーションを用いた新しいデータセットを提案する。
ソース言語とターゲット言語の談話構造と類似点と相違点について検討する。
我々はMT出力が人間の翻訳と基本的に異なることを発見した。
論文 参考訳(メタデータ) (2023-05-18T17:36:41Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Machine Translationese: Effects of Algorithmic Bias on Linguistic
Complexity in Machine Translation [2.0625936401496237]
我々は、機械翻訳におけるジェンダーの研究を超えて、偏見の増幅がより広い意味で言語に与える影響を調査する。
我々は、異なるデータ駆動MTパラダイムによって生成された翻訳の言語的豊かさ(語彙的および形態学的レベルで)を評価する。
論文 参考訳(メタデータ) (2021-01-30T18:49:11Z) - Decoding and Diversity in Machine Translation [90.33636694717954]
NMTが楽しむBLEUスコアに対して支払う費用の多様性の違いを特徴付ける。
本研究は,ジェンダー代名詞を翻訳する際に,検索が既知バイアスの正解源となることを示唆する。
論文 参考訳(メタデータ) (2020-11-26T21:09:38Z) - On the Integration of LinguisticFeatures into Statistical and Neural
Machine Translation [2.132096006921048]
機械翻訳に対する統計的アプローチの強みと人間の翻訳方法の相違について検討する。
自動翻訳システムがより正確な翻訳を行うために欠落している言語情報を同定する。
我々は、過一般化または「アルゴミックバイアス」をニューラルMTの潜在的な欠点として認識し、残りの言語問題の多くにリンクする。
論文 参考訳(メタデータ) (2020-03-31T16:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。