DePRL: Achieving Linear Convergence Speedup in Personalized
Decentralized Learning with Shared Representations
- URL: http://arxiv.org/abs/2312.10815v1
- Date: Sun, 17 Dec 2023 20:53:37 GMT
- Title: DePRL: Achieving Linear Convergence Speedup in Personalized
Decentralized Learning with Shared Representations
- Authors: Guojun Xiong, Gang Yan, Shiqiang Wang, Jian Li
- Abstract summary: We propose a novel personalized decentralized learning algorithm named DePRL via shared representations.
For the first time, DePRL achieves a provable linear speedup for convergence with general non-linear representations.
- Score: 31.47686582044592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized learning has emerged as an alternative method to the popular
parameter-server framework which suffers from high communication burden,
single-point failure and scalability issues due to the need of a central
server. However, most existing works focus on a single shared model for all
workers regardless of the data heterogeneity problem, rendering the resulting
model performing poorly on individual workers. In this work, we propose a novel
personalized decentralized learning algorithm named DePRL via shared
representations. Our algorithm relies on ideas from representation learning
theory to learn a low-dimensional global representation collaboratively among
all workers in a fully decentralized manner, and a user-specific
low-dimensional local head leading to a personalized solution for each worker.
We show that DePRL achieves, for the first time, a provable linear speedup for
convergence with general non-linear representations (i.e., the convergence rate
is improved linearly with respect to the number of workers). Experimental
results support our theoretical findings showing the superiority of our method
in data heterogeneous environments.
Related papers
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
Federated learning is a framework for distributed clients to collaboratively train a machine learning model using local data.
We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting.
We show that FedSPD learns accurate models even in low-connectivity networks.
arXiv Detail & Related papers (2024-10-24T15:48:34Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
Area Under Precision-Recall (AUPRC) was introduced as an effective metric.
Serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck.
We propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC.
arXiv Detail & Related papers (2023-08-06T06:51:32Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
Data heterogeneity is one of the most challenging issues in federated learning.
One such approach in deep neural networks based tasks is employing a shared feature representation and learning a customized classifier head for each client.
In this work, we conduct explicit local-global feature alignment by leveraging global semantic knowledge for learning a better representation.
arXiv Detail & Related papers (2023-06-20T19:58:58Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - RelaySum for Decentralized Deep Learning on Heterogeneous Data [71.36228931225362]
In decentralized machine learning, workers compute model updates on their local data.
Because the workers only communicate with few neighbors without central coordination, these updates propagate progressively over the network.
This paradigm enables distributed training on networks without all-to-all connectivity, helping to protect data privacy as well as to reduce the communication cost of distributed training in data centers.
arXiv Detail & Related papers (2021-10-08T14:55:32Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
We design a low complexity decentralized learning algorithm to train a recently proposed large neural network in distributed processing nodes (workers)
In our setup, the training data is distributed among the workers but is not shared in the training process due to privacy and security concerns.
We show that it is possible to achieve equivalent learning performance as if the data is available in a single place.
arXiv Detail & Related papers (2020-09-29T13:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.