FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning
- URL: http://arxiv.org/abs/2410.18862v1
- Date: Thu, 24 Oct 2024 15:48:34 GMT
- Title: FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning
- Authors: I-Cheng Lin, Osman Yagan, Carlee Joe-Wong,
- Abstract summary: Federated learning is a framework for distributed clients to collaboratively train a machine learning model using local data.
We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting.
We show that FedSPD learns accurate models even in low-connectivity networks.
- Score: 18.38030098837294
- License:
- Abstract: Federated learning has recently gained popularity as a framework for distributed clients to collaboratively train a machine learning model using local data. While traditional federated learning relies on a central server for model aggregation, recent advancements adopt a decentralized framework, enabling direct model exchange between clients and eliminating the single point of failure. However, existing decentralized frameworks often assume all clients train a shared model. Personalizing each client's model can enhance performance, especially with heterogeneous client data distributions. We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting, and show that it learns accurate models even in low-connectivity networks. To provide theoretical guarantees on convergence, we introduce a clustering-based framework that enables consensus on models for distinct data clusters while personalizing to unique mixtures of these clusters at different clients. This flexibility, allowing selective model updates based on data distribution, substantially reduces communication costs compared to prior work on personalized federated learning in decentralized settings. Experimental results on real-world datasets show that FedSPD outperforms multiple decentralized variants of personalized federated learning algorithms, especially in scenarios with low-connectivity networks.
Related papers
- Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions [1.6385815610837167]
Federated Cluster-Wise Refinement (FedCRef) involves clients that collaboratively train models on clusters with similar data distributions.
In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy.
This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each.
arXiv Detail & Related papers (2024-08-20T09:05:44Z) - Proximity-based Self-Federated Learning [1.0066310107046081]
This paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning.
Unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy.
arXiv Detail & Related papers (2024-07-17T08:44:45Z) - FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering [28.057411252785176]
Federated learning (FL) is an emerging distributed machine learning paradigm enabling collaborative model training on decentralized devices without exposing their local data.
This paper proposes FedClust, a novel CFL approach leveraging correlations between local model weights and client data distributions.
arXiv Detail & Related papers (2024-03-07T01:50:36Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Implicit Model Specialization through DAG-based Decentralized Federated
Learning [0.0]
Federated learning allows a group of distributed clients to train a common machine learning model on private data.
We propose a unified approach to decentralization and personalization in federated learning.
Our evaluation shows that the specialization of models emerges directly from the DAG-based communication of model updates.
arXiv Detail & Related papers (2021-11-01T20:55:47Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.