論文の概要: Domain adaption and physical constrains transfer learning for shale gas
production
- arxiv url: http://arxiv.org/abs/2312.10920v1
- Date: Mon, 18 Dec 2023 04:13:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 21:30:49.983658
- Title: Domain adaption and physical constrains transfer learning for shale gas
production
- Title(参考訳): シェールガス製造における領域適応と物理制約伝達学習
- Authors: Zhaozhong Yang, Liangjie Gou, Chao Min, Duo Yi, Xiaogang Li and
Guoquan Wen
- Abstract要約: 本稿では,ドメイン適応と物理制約を利用した新しい移動学習手法を提案する。
この手法は、データ分散の観点からの負の転送を減らすために、ソースドメインからの履歴データを効果的に活用する。
掘削, 完成, 地質データを物理的制約として組み込むことで, ハイブリッドモデルを構築する。
- 参考スコア(独自算出の注目度): 0.26440512250125126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective prediction of shale gas production is crucial for strategic
reservoir development. However, in new shale gas blocks, two main challenges
are encountered: (1) the occurrence of negative transfer due to insufficient
data, and (2) the limited interpretability of deep learning (DL) models. To
tackle these problems, we propose a novel transfer learning methodology that
utilizes domain adaptation and physical constraints. This methodology
effectively employs historical data from the source domain to reduce negative
transfer from the data distribution perspective, while also using physical
constraints to build a robust and reliable prediction model that integrates
various types of data. The methodology starts by dividing the production data
from the source domain into multiple subdomains, thereby enhancing data
diversity. It then uses Maximum Mean Discrepancy (MMD) and global average
distance measures to decide on the feasibility of transfer. Through domain
adaptation, we integrate all transferable knowledge, resulting in a more
comprehensive target model. Lastly, by incorporating drilling, completion, and
geological data as physical constraints, we develop a hybrid model. This model,
a combination of a multi-layer perceptron (MLP) and a Transformer
(Transformer-MLP), is designed to maximize interpretability. Experimental
validation in China's southwestern region confirms the method's effectiveness.
- Abstract(参考訳): シェールガス生産の効果的な予測は戦略的貯水池開発に不可欠である。
しかし,新しいシェールガスブロックでは,(1)データ不足による負の伝達の発生,(2)深層学習モデル(dl)モデルの限定解釈可能性の2つの課題に遭遇した。
そこで本研究では,ドメイン適応と物理的制約を利用した新しいトランスファー学習手法を提案する。
この手法は、ソースドメインからの履歴データを効果的に活用し、データ分散の観点からの負の転送を減らすと同時に、様々な種類のデータを統合する堅牢で信頼性の高い予測モデルを構築するために物理的制約を用いる。
この方法論は、プロダクションデータをソースドメインから複数のサブドメインに分割して、データの多様性を高めることから始まります。
次に、最大平均差(mmd)とグローバル平均距離尺度を使用して転送可能性を決定する。
ドメイン適応により、転送可能な知識をすべて統合し、より包括的なターゲットモデルを作ります。
最後に, 掘削, 完成, 地質データを物理制約として組み込むことで, ハイブリッドモデルを構築する。
このモデルは、多層パーセプトロン(MLP)とトランスフォーマー(Transformer-MLP)を組み合わせたもので、解釈可能性の最大化を目的としている。
中国南西部での実験検証の結果、この方法の有効性が確認された。
関連論文リスト
- EUDA: An Efficient Unsupervised Domain Adaptation via Self-Supervised Vision Transformer [21.59850502993888]
教師なしドメイン適応(UDA)は、トレーニング(ソース)データの分散がテスト(ターゲット)データと異なる領域シフトの問題を軽減することを目的としている。
この問題に対処するために多くのモデルが開発され、近年では視覚変換器(ViT)が有望な結果を示している。
本稿では、トレーニング可能なパラメータを削減し、調整可能な複雑性を実現するための効率的なモデルを提案する。
論文 参考訳(メタデータ) (2024-07-31T03:29:28Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
本稿では,機械学習パスロス予測のための新しいシミュレーション強化データ拡張手法を提案する。
本手法は,細胞被覆シミュレータから生成した合成データと,独立して収集した実世界のデータセットを統合する。
合成データの統合は、異なる環境におけるモデルの一般化可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-03T00:38:08Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - LAMA-Net: Unsupervised Domain Adaptation via Latent Alignment and
Manifold Learning for RUL Prediction [0.0]
我々は,エンコーダ-デコーダベースモデル(Transformer)であるtextitLAMA-Net,平均最大離散性(MMD)を用いた潜在アライメント,および多様体学習を提案する。
提案手法は、RUL予測において領域適応を行うための有望なアプローチを提供する。
論文 参考訳(メタデータ) (2022-08-17T16:28:20Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
特定のデータセットでひとつのタスクを実行するための強力な神経予測器をトレーニングするNLPのパラダイムが、さまざまなアプリケーションで最先端のパフォーマンスを実現している。
データ分布が定常である、すなわち、トレーニングとテストの時間の両方で、データは固定された分布からサンプリングされる、という仮定に基づいて構築される。
この方法でのトレーニングは、人間が絶えず変化する情報の流れの中で学習し、操作できる方法と矛盾する。
データ分散がモデル寿命の経過とともにシフトすることが期待される実世界のユースケースに不適応である。
論文 参考訳(メタデータ) (2021-09-03T14:29:20Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z) - A Simple Baseline to Semi-Supervised Domain Adaptation for Machine
Translation [73.3550140511458]
State-of-the-art Neural Machine Translation (NMT)システムは、データハングリーであり、教師付きデータを持たない新しいドメインではパフォーマンスが良くない。
NMTの半教師付きドメイン適応シナリオに対する単純だが効果のあるアプローチを提案する。
このアプローチは、言語モデリング、バックトランスレーション、教師付き翻訳の3つのトレーニング目標を通じて、TransformerベースのNMTモデルを反復的にトレーニングする。
論文 参考訳(メタデータ) (2020-01-22T16:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。