論文の概要: LabelCraft: Empowering Short Video Recommendations with Automated Label Crafting
- arxiv url: http://arxiv.org/abs/2312.10947v2
- Date: Thu, 14 Nov 2024 13:00:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:21:23.522278
- Title: LabelCraft: Empowering Short Video Recommendations with Automated Label Crafting
- Title(参考訳): LabelCraft: 自動ラベル作成による短いビデオレコメンデーションの強化
- Authors: Yimeng Bai, Yang Zhang, Jing Lu, Jianxin Chang, Xiaoxue Zang, Yanan Niu, Yang Song, Fuli Feng,
- Abstract要約: 短いビデオレコメンデーションは、ユーザからのフィードバックの質のために、しばしば制限に直面します。
元のフィードバックからより信頼性の高いラベルを生成する、という新しいタスクが登場した。
本稿では,ラベルの自動生成手法であるLabelCraftを紹介する。
- 参考スコア(独自算出の注目度): 39.34451811003711
- License:
- Abstract: Short video recommendations often face limitations due to the quality of user feedback, which may not accurately depict user interests. To tackle this challenge, a new task has emerged: generating more dependable labels from original feedback. Existing label generation methods rely on manual rules, demanding substantial human effort and potentially misaligning with the desired objectives of the platform. To transcend these constraints, we introduce LabelCraft, a novel automated label generation method explicitly optimizing pivotal operational metrics for platform success. By formulating label generation as a higher-level optimization problem above recommender model optimization, LabelCraft introduces a trainable labeling model for automatic label mechanism modeling. Through meta-learning techniques, LabelCraft effectively addresses the bi-level optimization hurdle posed by the recommender and labeling models, enabling the automatic acquisition of intricate label generation mechanisms. Extensive experiments on real-world datasets corroborate LabelCraft's excellence across varied operational metrics, encompassing usage time, user engagement, and retention. Codes are available at https://github.com/baiyimeng/LabelCraft.
- Abstract(参考訳): 短いビデオレコメンデーションは、ユーザからのフィードバックの質によって制限を受けることが多い。
この課題に取り組むために、新しいタスクが出現した: 元のフィードバックからより信頼性の高いラベルを生成する。
既存のラベル生成手法は手動のルールに依存しており、相当な人的努力を必要とし、プラットフォームの望ましい目的を間違える可能性がある。
これらの制約を超越するために,プラットフォームの成功のために重要な運用指標を明示的に最適化する,新しいラベル自動生成手法であるLabelCraftを紹介した。
ラベル生成をレコメンダモデル最適化以上の高レベルな最適化問題として定式化することにより,ラベル自動モデリングのためのトレーニング可能なラベルモデルを導入する。
メタラーニング技術を通じて、ラベルクラフトはレコメンダとラベル付けモデルによって引き起こされる二段階最適化のハードルを効果的に解決し、複雑なラベル生成機構の自動取得を可能にした。
実世界のデータセットに関する大規模な実験は、使用時間、ユーザエンゲージメント、保持を含むさまざまな運用メトリクスにまたがって、LabelCraftの卓越性を裏付けるものだ。
コードはhttps://github.com/baiyimeng/LabelCraft.comで入手できる。
関連論文リスト
- Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss [6.244642999033755]
XMC (Extreme Multi-label Classification) メソッドは、非常に大きなラベル空間において、与えられたクエリの関連ラベルを予測する。
XMCにおける最近の研究は、テキスト記述を最も近いラベルの復元に適した埋め込み空間に投影するディープエンコーダを用いてこの問題に対処している。
本稿では,新しいプロトタイプ・コントラスト学習技術を用いて,ブルートフォース手法を超越した効率と性能を再現するXMC手法PRIMEを提案する。
論文 参考訳(メタデータ) (2024-10-27T10:24:23Z) - Label Smarter, Not Harder: CleverLabel for Faster Annotation of
Ambiguous Image Classification with Higher Quality [0.6927055673104933]
私たちは1つのオプションとして提案誘導アノテーションを使用し、アノテーション間の一貫性を高めます。
本稿では,検証された提案誘導アノテーションと修復されたLABLを用いて,コスト効率の高いLabElingのためのCleverLabelを提案する。
クレバーラベルはラベリングコストを最大30.0%削減し、クルバック・リーバーの分岐率を最大29.8%に向上させる。
論文 参考訳(メタデータ) (2023-05-22T08:12:25Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - AutoWS: Automated Weak Supervision Framework for Text Classification [1.748907524043535]
本稿では、ドメインエキスパートへの依存を減らしつつ、弱い監督プロセスの効率を高めるための新しい枠組みを提案する。
本手法では,ラベルクラス毎にラベル付きサンプルの小さなセットが必要であり,多数のラベル付きデータにノイズ付きラベルを割り当てるラベル付き関数のセットを自動生成する。
論文 参考訳(メタデータ) (2023-02-07T07:12:05Z) - Losses over Labels: Weakly Supervised Learning via Direct Loss
Construction [71.11337906077483]
プログラム可能な弱い監視は、機械学習のパラダイムとして成長している。
ラベルの中間ステップを経由することなく,直接損失を発生させるため,ラベルのロバスト・オーバー・ラベル(Losses over Labels, LoL)を提案する。
いくつかのベンチマークテキストおよび画像分類タスクにおいて、LoLは既存の弱い監督手法を改善していることを示す。
論文 参考訳(メタデータ) (2022-12-13T22:29:14Z) - Improved Adaptive Algorithm for Scalable Active Learning with Weak
Labeler [89.27610526884496]
Weak Labeler Active Cover (WL-AC)は、要求される精度を維持しながら、クエリの複雑さを低減するために、低品質の弱いラベルを堅牢に活用することができる。
受動学習と同一の精度を維持しつつラベル数を著しく削減し, 劣化したMNISTデータセット上での有効性を示す。
論文 参考訳(メタデータ) (2022-11-04T02:52:54Z) - Eliciting and Learning with Soft Labels from Every Annotator [31.10635260890126]
個々のアノテータからソフトラベルを効率よく抽出することに注力する。
ラベルによる学習は,従来の手法と同等のモデル性能を達成できることを実証する。
論文 参考訳(メタデータ) (2022-07-02T12:03:00Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z) - Learning Soft Labels via Meta Learning [3.4852307714135375]
シングルホットラベルは概念間のソフトな決定境界を表現していないため、トレーニングされたモデルは過度に適合する傾向にある。
そこで我々は,ラベルを学習可能なパラメータとして扱い,モデルパラメータとともに最適化するフレームワークを提案する。
本研究では, 学習ラベルがクラス間の意味的関係を捉え, 蒸留の下流作業における教師モデルを改善することを示す。
論文 参考訳(メタデータ) (2020-09-20T18:42:13Z) - Learning to Purify Noisy Labels via Meta Soft Label Corrector [49.92310583232323]
最近のディープニューラルネットワーク(DNN)は、ノイズラベルによるバイアス付きトレーニングデータに容易に適合する。
ラベル修正戦略はこの問題を軽減するために一般的に用いられる。
メタ学習モデルを提案する。
論文 参考訳(メタデータ) (2020-08-03T03:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。