論文の概要: Learning Domain-Independent Heuristics for Grounded and Lifted Planning
- arxiv url: http://arxiv.org/abs/2312.11143v1
- Date: Mon, 18 Dec 2023 12:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 20:20:07.735402
- Title: Learning Domain-Independent Heuristics for Grounded and Lifted Planning
- Title(参考訳): グラウンドドおよびリフトドプランニングのためのドメイン独立ヒューリスティックス学習
- Authors: Dillon Z. Chen and Felipe Trevizan and Sylvie Thiebaux
- Abstract要約: グラフニューラルネットワーク(GNN)を用いたドメイン非依存の学習に適した計画課題の3つの新しいグラフ表現を提案する。
本稿では,計画課題の持ち上げ表現のみを用いて,ドメイン非依存を学習するための最初の手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present three novel graph representations of planning tasks suitable for
learning domain-independent heuristics using Graph Neural Networks (GNNs) to
guide search. In particular, to mitigate the issues caused by large grounded
GNNs we present the first method for learning domain-independent heuristics
with only the lifted representation of a planning task. We also provide a
theoretical analysis of the expressiveness of our models, showing that some are
more powerful than STRIPS-HGN, the only other existing model for learning
domain-independent heuristics. Our experiments show that our heuristics
generalise to much larger problems than those in the training set, vastly
surpassing STRIPS-HGN heuristics.
- Abstract(参考訳): 本稿では,グラフニューラルネットワーク(gnns)を用いた領域非依存ヒューリスティックス学習に適した計画タスクの3つの新しいグラフ表現法を提案する。
特に,大規模なGNNによる問題を軽減するために,計画課題の持ち上げ表現のみを用いて,ドメインに依存しないヒューリスティックスを学ぶための最初の方法を提案する。
また,本モデルの表現性に関する理論的解析を行い,ドメイン非依存のヒューリスティック学習モデルであるSTRIPS-HGNよりも強力であることを示す。
我々の実験は、我々のヒューリスティックスがトレーニングセットにあるものよりもずっと大きな問題に一般化していることを示しました。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
定義の異なる表現力向上モデルに関する第1回調査を行う。
モデルは、グラフ機能拡張、グラフトポロジ拡張、GNNアーキテクチャ拡張という3つのカテゴリに基づいてレビューされる。
論文 参考訳(メタデータ) (2023-08-16T09:12:21Z) - Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities [15.51428011794213]
グラフニューラルネットワーク(GNN)は、(静的)グラフ構造化データを学ぶための主要なパラダイムとなっている。
近年, 時間グラフのためのGNNベースのモデルが, GNNの能力を拡張すべく, 有望な研究領域として浮上している。
本稿では、時間的GNNの現状を概観し、学習設定とタスクの厳密な形式化を導入する。
調査は、研究と応用の両方の観点から、この分野における最も関連性の高いオープン課題に関する議論で締めくくります。
論文 参考訳(メタデータ) (2023-02-02T11:12:51Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - An Analysis of Attentive Walk-Aggregating Graph Neural Networks [34.866935881726256]
グラフニューラルネットワーク(GNN)は強力な表現力を持っていることが示されている。
AWAREと呼ばれる新しいGNNモデルを提案し、アテンションスキームを用いて、グラフ内のウォークに関する情報を集約する。
論文 参考訳(メタデータ) (2021-10-06T11:41:12Z) - Graph Neural Networks: Methods, Applications, and Opportunities [1.2183405753834562]
本稿では,各学習環境におけるグラフニューラルネットワーク(GNN)の包括的調査について報告する。
各学習課題に対するアプローチは、理論的および経験的視点の両方から分析される。
さまざまなアプリケーションやベンチマークデータセットも提供されており、GNNの一般適用性に疑問が残るオープンな課題もある。
論文 参考訳(メタデータ) (2021-08-24T13:46:19Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Attentive Graph Neural Networks for Few-Shot Learning [74.01069516079379]
グラフニューラルネットワーク(GNN)は、数ショットの学習タスクを含む多くの困難なアプリケーションにおいて、優れたパフォーマンスを示している。
少数のサンプルからモデルを学習し、一般化する能力があるにもかかわらず、GNNは通常、モデルが深くなるにつれて、過度な過度な適合と過度なスムーシングに悩まされる。
本稿では,三重注意機構を組み込むことにより,これらの課題に対処するための新しい注意型GNNを提案する。
論文 参考訳(メタデータ) (2020-07-14T07:43:09Z) - When Does Self-Supervision Help Graph Convolutional Networks? [118.37805042816784]
自己スーパービジョンは、画像のより転送可能で一般化可能で堅牢な表現学習のために、畳み込みニューラルネットワーク(CNN)を訓練するために採用されている。
本研究では,グラフ畳み込みネットワーク(GCN)に自己超越を取り入れた最初の体系的探索について報告する。
その結果、適切に設計されたタスク形式と構成機構により、より一般化性と堅牢性を得る上で、自己スーパービジョンはGCNに恩恵をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-06-16T13:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。