Path Signature Representation of Patient-Clinician Interactions as a
Predictor for Neuropsychological Tests Outcomes in Children: A Proof of
Concept
- URL: http://arxiv.org/abs/2312.11512v1
- Date: Tue, 12 Dec 2023 12:14:08 GMT
- Title: Path Signature Representation of Patient-Clinician Interactions as a
Predictor for Neuropsychological Tests Outcomes in Children: A Proof of
Concept
- Authors: Giulio Falcioni, Alexandra Georgescu, Emilia Molimpakis, Lev Gottlieb,
Taylor Kuhn, Stefano Goria
- Abstract summary: The study utilised a dataset of 39 video recordings, capturing extensive sessions where clinicians administered cognitive assessment tests.
Despite the limited sample size and heterogeneous recording styles, the analysis successfully extracted path signatures as features from the recorded data.
Results suggest that these features exhibit promising potential for predicting all cognitive tests scores of the entire session length.
- Score: 40.737684553736166
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research report presents a proof-of-concept study on the application of
machine learning techniques to video and speech data collected during
diagnostic cognitive assessments of children with a neurodevelopmental
disorder. The study utilised a dataset of 39 video recordings, capturing
extensive sessions where clinicians administered, among other things, four
cognitive assessment tests. From the first 40 minutes of each clinical session,
covering the administration of the Wechsler Intelligence Scale for Children
(WISC-V), we extracted head positions and speech turns of both clinician and
child. Despite the limited sample size and heterogeneous recording styles, the
analysis successfully extracted path signatures as features from the recorded
data, focusing on patient-clinician interactions. Importantly, these features
quantify the interpersonal dynamics of the assessment process (dialogue and
movement patterns). Results suggest that these features exhibit promising
potential for predicting all cognitive tests scores of the entire session
length and for prototyping a predictive model as a clinical decision support
tool. Overall, this proof of concept demonstrates the feasibility of leveraging
machine learning techniques for clinical video and speech data analysis in
order to potentially enhance the efficiency of cognitive assessments for
neurodevelopmental disorders in children.
Related papers
- Speech-based Clinical Depression Screening: An Empirical Study [32.84863235794086]
This study investigates the utility of speech signals for AI-based depression screening across varied interaction scenarios.
participants include depressed patients recruited from the outpatient clinics of Peking University Sixth Hospital.
We extracted acoustic and deep speech features from each participant's segmented recordings.
arXiv Detail & Related papers (2024-06-05T09:43:54Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
This study presents a comprehensive approach to identify distinctive speech patterns through the analysis of examiner-patient dialogues.
We extracted 40 speech-related features, categorized into frequency, zero-crossing rate, energy, spectral characteristics, Mel Frequency Cepstral Coefficients (MFCCs) and balance.
The classification model aimed to differentiate between ASD and non-ASD cases, achieving an accuracy of 87.75%.
arXiv Detail & Related papers (2024-05-03T02:59:15Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
We consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations without human expert annotation.
A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose.
The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference.
arXiv Detail & Related papers (2023-10-25T08:55:48Z) - Counterfactual Explanations and Predictive Models to Enhance Clinical
Decision-Making in Schizophrenia using Digital Phenotyping [0.966840768820136]
We propose a machine learning system capable of predicting, detecting, and explaining individual changes in symptoms of patients with Schizophrenia.
The system detects decreases in symptoms using changepoint algorithms and uses counterfactual explanations as a recourse in a simulated continuous monitoring scenario in healthcare.
arXiv Detail & Related papers (2023-06-06T19:33:03Z) - Analysing the Impact of Audio Quality on the Use of Naturalistic
Long-Form Recordings for Infant-Directed Speech Research [62.997667081978825]
Modelling of early language acquisition aims to understand how infants bootstrap their language skills.
Recent developments have enabled the use of more naturalistic training data for computational models.
It is currently unclear how the sound quality could affect analyses and modelling experiments conducted on such data.
arXiv Detail & Related papers (2023-05-03T08:25:37Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
In clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention.
We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines.
arXiv Detail & Related papers (2022-10-16T10:12:07Z) - fMRI Neurofeedback Learning Patterns are Predictive of Personal and
Clinical Traits [62.997667081978825]
We obtain a personal signature of a person's learning progress in a self-neuromodulation task, guided by functional MRI (fMRI)
The signature is based on predicting the activity of the Amygdala in a second neurofeedback session, given a similar fMRI-derived brain state in the first session.
arXiv Detail & Related papers (2021-12-21T06:52:48Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Comparison of Speaker Role Recognition and Speaker Enrollment Protocol
for conversational Clinical Interviews [9.728371067160941]
We train end-to-end neural network architectures to adapt to each task and evaluate each approach under the same metric.
Results do not depend on the demographics of the Interviewee, highlighting the clinical relevance of our methods.
arXiv Detail & Related papers (2020-10-30T09:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.