論文の概要: High-Quality 3D Creation from A Single Image Using Subject-Specific Knowledge Prior
- arxiv url: http://arxiv.org/abs/2312.11535v3
- Date: Wed, 19 Feb 2025 18:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:57:10.462984
- Title: High-Quality 3D Creation from A Single Image Using Subject-Specific Knowledge Prior
- Title(参考訳): 主観的知識を用いた単一画像からの高品質3次元創出
- Authors: Nan Huang, Ting Zhang, Yuhui Yuan, Dong Chen, Shanghang Zhang,
- Abstract要約: 1枚の画像から高品質な3Dモデルを生成するための新しい2段階のアプローチを提案する。
この方法は、効率的な3Dアセット作成の必要性によって動機付けられている。
- 参考スコア(独自算出の注目度): 31.182250231240598
- License:
- Abstract: In this paper, we address the critical bottleneck in robotics caused by the scarcity of diverse 3D data by presenting a novel two-stage approach for generating high-quality 3D models from a single image. This method is motivated by the need to efficiently expand 3D asset creation, particularly for robotics datasets, where the variety of object types is currently limited compared to general image datasets. Unlike previous methods that primarily rely on general diffusion priors, which often struggle to align with the reference image, our approach leverages subject-specific prior knowledge. By incorporating subject-specific priors in both geometry and texture, we ensure precise alignment between the generated 3D content and the reference object. Specifically, we introduce a shading mode-aware prior into the NeRF optimization process, enhancing the geometry and refining texture in the coarse outputs to achieve superior quality. Extensive experiments demonstrate that our method significantly outperforms prior approaches.
- Abstract(参考訳): 本稿では,1枚の画像から高品質な3Dモデルを生成するための新しい2段階アプローチを提案することにより,多様な3Dデータの不足に起因するロボティクスの重大なボトルネックに対処する。
この方法は、特にロボットデータセットにおいて、一般的な画像データセットと比較して様々な種類のオブジェクトが制限されている3Dアセットを効率的に拡張する必要性によって動機付けられている。
参照画像との整合に苦慮する従来の拡散先行手法とは異なり,本手法は主観的な事前知識を活用する。
形状とテクスチャの両方に主観的な先行要素を組み込むことで、生成した3Dコンテンツと参照オブジェクトの正確なアライメントを確保する。
具体的には、NeRF最適化プロセスに先立ってシェーディングモードアウェアを導入し、粗い出力の形状とテクスチャを向上し、優れた品質を実現する。
大規模な実験により,本手法が先行手法より有意に優れていたことが確認された。
関連論文リスト
- Towards High-Fidelity 3D Portrait Generation with Rich Details by Cross-View Prior-Aware Diffusion [63.81544586407943]
シングルイメージの3Dポートレート生成法は通常、多視点の知識を提供するために2次元拡散モデルを使用し、それを3次元表現に蒸留する。
本稿では,複数ビュー画像の状態の整合性を高める条件として,複数ビュー先行を明示的かつ暗黙的に組み込んだハイブリッド優先ディフジョンモデルを提案する。
実験により,1枚の画像から正確な幾何学的,詳細な3次元像を作成できることが示された。
論文 参考訳(メタデータ) (2024-11-15T17:19:18Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
本稿では,高精細な幾何学と高品質なテクスチャの創出に優れたテキスト・ツー・3D生成モデルであるDreamPolishを紹介する。
幾何構成フェーズでは, 合成過程の安定性を高めるために, 複数のニューラル表現を利用する。
テクスチャ生成フェーズでは、そのような領域に向けて神経表現を導くために、新しいスコア蒸留、すなわちドメインスコア蒸留(DSD)を導入する。
論文 参考訳(メタデータ) (2024-11-03T15:15:01Z) - Grounded Compositional and Diverse Text-to-3D with Pretrained Multi-View Diffusion Model [65.58911408026748]
複雑な合成文のプロンプトを正確に追従できる3Dアセットを生成するために,グラウンドド・ドレーマーを提案する。
まず,テキスト・ツー・3Dパイプラインのボトルネックとして,テキスト誘導4視点画像の活用を提唱する。
次に,テキストアラインな4ビュー画像生成を促すための注意再焦点機構を導入する。
論文 参考訳(メタデータ) (2024-04-28T04:05:10Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
本手法は,テキスト・イメージ・ペアの広い範囲で訓練された強力な画像拡散モデルを直接活用する。
提案手法では,高画質な3D画像編集が可能で,視点変換が大きく,外観や形状の整合性も高い。
論文 参考訳(メタデータ) (2024-03-18T06:18:59Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - HD-Fusion: Detailed Text-to-3D Generation Leveraging Multiple Noise
Estimation [43.83459204345063]
本稿では,複数の雑音推定プロセスと事前学習した2次元拡散を併用した新しい手法を提案する。
その結果,提案手法はベースラインと比較して高品質な細部を生成できることが示唆された。
論文 参考訳(メタデータ) (2023-07-30T09:46:22Z) - Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion
Prior [36.40582157854088]
本研究では,1枚の画像のみから高忠実度3Dコンテンツを作成する問題について検討する。
我々は、よく訓練された2D拡散モデルからの事前知識を活用し、3D生成のための3D認識監視として機能する。
本手法は,汎用オブジェクトの単一画像から高品質な3D作成を実現するための最初の試みであり,テキスト・ツー・3D作成やテクスチャ編集などの様々な応用を可能にする。
論文 参考訳(メタデータ) (2023-03-24T17:54:22Z) - Geometric Processing for Image-based 3D Object Modeling [2.6397379133308214]
本稿では,幾何処理の3つの主要構成要素の最先端手法について紹介する:(1)ジオレファレンス; 2)画像密度マッチング3)テクスチャマッピング。
3Dオブジェクト再構成ワークフローにおける画像の大部分が自動化された幾何処理は、現実的な3Dモデリングの重要な部分となっている。
論文 参考訳(メタデータ) (2021-06-27T18:33:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。