Learning Merton's Strategies in an Incomplete Market: Recursive Entropy
Regularization and Biased Gaussian Exploration
- URL: http://arxiv.org/abs/2312.11797v1
- Date: Tue, 19 Dec 2023 02:14:13 GMT
- Title: Learning Merton's Strategies in an Incomplete Market: Recursive Entropy
Regularization and Biased Gaussian Exploration
- Authors: Min Dai, Yuchao Dong, Yanwei Jia, and Xun Yu Zhou
- Abstract summary: We take the reinforcement learning (RL) approach to learn optimal portfolio policies directly by exploring the unknown market.
We present an analysis of the resulting errors to show how the level of exploration affects the learned policies.
- Score: 11.774563966512709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study Merton's expected utility maximization problem in an incomplete
market, characterized by a factor process in addition to the stock price
process, where all the model primitives are unknown. We take the reinforcement
learning (RL) approach to learn optimal portfolio policies directly by
exploring the unknown market, without attempting to estimate the model
parameters. Based on the entropy-regularization framework for general
continuous-time RL formulated in Wang et al. (2020), we propose a recursive
weighting scheme on exploration that endogenously discounts the current
exploration reward by the past accumulative amount of exploration. Such a
recursive regularization restores the optimality of Gaussian exploration.
However, contrary to the existing results, the optimal Gaussian policy turns
out to be biased in general, due to the interwinding needs for hedging and for
exploration. We present an asymptotic analysis of the resulting errors to show
how the level of exploration affects the learned policies. Furthermore, we
establish a policy improvement theorem and design several RL algorithms to
learn Merton's optimal strategies. At last, we carry out both simulation and
empirical studies with a stochastic volatility environment to demonstrate the
efficiency and robustness of the RL algorithms in comparison to the
conventional plug-in method.
Related papers
- Generalized Bayesian deep reinforcement learning [2.469908534801392]
We propose to model the dynamics of the unknown environment through deep generative models assuming Markov dependence.
In absence of likelihood functions for these models we train them by learning a generalized predictive-sequential (or prequential) scoring rule (SR) posterior.
For policy learning, we propose expected Thompson sampling (ETS) to learn the optimal policy by maximizing the expected value function with respect to the posterior distribution.
arXiv Detail & Related papers (2024-12-16T13:02:17Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
arXiv Detail & Related papers (2023-05-29T17:11:28Z) - Truncating Trajectories in Monte Carlo Reinforcement Learning [48.97155920826079]
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal.
We propose an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths.
We show that an appropriate truncation of the trajectories can succeed in improving performance.
arXiv Detail & Related papers (2023-05-07T19:41:57Z) - One-Step Distributional Reinforcement Learning [10.64435582017292]
We present the simpler one-step distributional reinforcement learning (OS-DistrRL) framework.
We show that our approach comes with a unified theory for both policy evaluation and control.
We propose two OS-DistrRL algorithms for which we provide an almost sure convergence analysis.
arXiv Detail & Related papers (2023-04-27T06:57:00Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Bayesian regularization of empirical MDPs [11.3458118258705]
We take a Bayesian perspective and regularize the objective function of the Markov decision process with prior information.
We evaluate our proposed algorithms on synthetic simulations and on real-world search logs of a large scale online shopping store.
arXiv Detail & Related papers (2022-08-03T22:02:50Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Randomized Policy Optimization for Optimal Stopping [0.0]
We propose a new methodology for optimal stopping based on randomized linear policies.
We show that our approach can substantially outperform state-of-the-art methods.
arXiv Detail & Related papers (2022-03-25T04:33:15Z) - A Reinforcement Learning Approach to the Stochastic Cutting Stock
Problem [0.0]
We propose a formulation of the cutting stock problem as a discounted infinite-horizon decision process.
An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost.
arXiv Detail & Related papers (2021-09-20T14:47:54Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.