A Survey on Property-Preserving Database Encryption Techniques in the Cloud
- URL: http://arxiv.org/abs/2312.12075v1
- Date: Tue, 19 Dec 2023 11:50:31 GMT
- Title: A Survey on Property-Preserving Database Encryption Techniques in the Cloud
- Authors: Johannes Koppenwallner, Erich Schikuta,
- Abstract summary: There are concerns about the security and confidentiality of the outsourced data.
The report at hand presents a survey on common encryption techniques used for storing data in relation Cloud database services.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outsourcing a relational database to the cloud offers several benefits, including scalability, availability, and cost-effectiveness. However, there are concerns about the security and confidentiality of the outsourced data. A general approach here would be to encrypt the data with a standardized encryption algorithm and then store the data only encrypted in the cloud. The problem with this approach, however, is that with encryption, important properties of the data such as sorting, format or comparability, which are essential for the functioning of database queries, are lost. One solution to this problem is the use of encryption algorithms, which also preserve these properties in the encrypted data, thus enabling queries to encrypted data. These algorithms range from simple algorithms like Caesar encryption to secure algorithms like mOPE. The report at hand presents a survey on common encryption techniques used for storing data in relation Cloud database services. It presents the applied methods and identifies their characteristics.
Related papers
- K-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data [0.0]
In public cloud environments while data is encrypted, the cloud service provider typically controls the encryption keys.
This situation makes traditional privacy-preserving classification systems inadequate.
We propose a secure k nearest neighbor classification algorithm for encrypted, outsourced data.
arXiv Detail & Related papers (2024-07-05T19:44:17Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud [0.0]
encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues.
Sanyashi et al. proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud.
We give an efficient algorithm and empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA)
arXiv Detail & Related papers (2024-03-14T03:53:01Z) - EmojiCrypt: Prompt Encryption for Secure Communication with Large
Language Models [41.090214475309516]
Cloud-based large language models (LLMs) pose substantial risks of data breaches and unauthorized access to sensitive information.
This paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy.
arXiv Detail & Related papers (2024-02-08T17:57:11Z) - DiCE -- A Data Encryption Proxy for the Cloud [0.0]
There are concerns about the confidentiality and security of the outsourced data.
The DiCE' driver parses queries as a proxy and encrypts these queries.
This allows to execute many queries on an encrypted database in the cloud with the relational performance as on unencrypted databases.
arXiv Detail & Related papers (2023-10-09T13:33:59Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Two Fish Encryption Based Blockchain Technology for Secured Data Storage [0.0]
This article proposed block chain with hybrid encryption technique for securing medical data stored in block chain model at cloud storage.
New Two fish encryption model is implemented based on RSA Multiple Precision Arithmetic.
arXiv Detail & Related papers (2023-09-21T04:08:23Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.