Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud
- URL: http://arxiv.org/abs/2403.09080v2
- Date: Wed, 17 Apr 2024 06:09:03 GMT
- Title: Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud
- Authors: Shyam Murthy, Santosh Kumar Upadhyaya, Srinivas Vivek,
- Abstract summary: encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues.
Sanyashi et al. proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud.
We give an efficient algorithm and empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA)
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rise of cloud computing has spurred a trend of transferring data storage and computational tasks to the cloud. To protect confidential information such as customer data and business details, it is essential to encrypt this sensitive data before cloud storage. Implementing encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues. Moreover, to facilitate the execution of data mining algorithms on the cloud-stored data, the encryption needs to be compatible with domain computation. The $k$-nearest neighbor ($k$-NN) computation for a specific query vector is widely used in fields like location-based services. Sanyashi et al. (ICISS 2023) proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud by utilizing Asymmetric Scalar-Product-Preserving Encryption (ASPE). In this work, we identify a significant vulnerability in the aforementioned encryption scheme of Sanyashi et al. Specifically, we give an efficient algorithm and also empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA).
Related papers
- DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data [14.21750921409931]
We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
arXiv Detail & Related papers (2024-10-19T21:19:39Z) - CCA-Secure Key-Aggregate Proxy Re-Encryption for Secure Cloud Storage [1.4610685586329806]
Data protection in cloud storage is the key to the survival of the cloud industry.
Proxy Re-Encryption schemes enable users to convert their ciphertext into others ciphertext by using a re-encryption key.
Recently, we lowered the key storage cost of C-PREs to constant size and proposed the first Key-Aggregate Proxy Re-Encryption scheme.
arXiv Detail & Related papers (2024-10-10T17:02:49Z) - K-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data [0.0]
In public cloud environments while data is encrypted, the cloud service provider typically controls the encryption keys.
This situation makes traditional privacy-preserving classification systems inadequate.
We propose a secure k nearest neighbor classification algorithm for encrypted, outsourced data.
arXiv Detail & Related papers (2024-07-05T19:44:17Z) - Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing [3.125865379632205]
Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud.
We propose an outsourced decryption protocol for the prevailing RLWE-based fully homomorphic encryption schemes.
Our experiments demonstrate that the proposed protocol achieves up to a $67%$ acceleration in the client's local decryption, accompanied by a $50%$ reduction in space usage.
arXiv Detail & Related papers (2024-06-28T14:51:36Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - A Survey on Property-Preserving Database Encryption Techniques in the Cloud [0.0]
There are concerns about the security and confidentiality of the outsourced data.
The report at hand presents a survey on common encryption techniques used for storing data in relation Cloud database services.
arXiv Detail & Related papers (2023-12-19T11:50:31Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - NeuraCrypt: Hiding Private Health Data via Random Neural Networks for
Public Training [64.54200987493573]
We propose NeuraCrypt, a private encoding scheme based on random deep neural networks.
NeuraCrypt encodes raw patient data using a randomly constructed neural network known only to the data-owner.
We show that NeuraCrypt achieves competitive accuracy to non-private baselines on a variety of x-ray tasks.
arXiv Detail & Related papers (2021-06-04T13:42:21Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.