論文の概要: Object Detection for Automated Coronary Artery Using Deep Learning
- arxiv url: http://arxiv.org/abs/2312.12135v2
- Date: Tue, 30 Apr 2024 14:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:28:13.219109
- Title: Object Detection for Automated Coronary Artery Using Deep Learning
- Title(参考訳): ディープラーニングを用いた自動冠動脈の物体検出
- Authors: Hadis Keshavarz, Hossein Sadr,
- Abstract要約: 本稿では,冠動脈狭窄の部位を正確に同定するために,X線血管造影画像の物体検出法を応用した。
このモデルにより,狭窄箇所の自動的かつリアルタイムな検出が可能となり,決定プロセスの重要かつ機密性の高い支援が可能となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the era of digital medicine, medical imaging serves as a widespread technique for early disease detection, with a substantial volume of images being generated and stored daily in electronic patient records. X-ray angiography imaging is a standard and one of the most common methods for rapidly diagnosing coronary artery diseases. The notable achievements of recent deep learning algorithms align with the increased use of electronic health records and diagnostic imaging. Deep neural networks, leveraging abundant data, advanced algorithms, and powerful computational capabilities, prove highly effective in the analysis and interpretation of images. In this context, Object detection methods have become a promising approach, particularly through convolutional neural networks (CNN), streamlining medical image analysis by eliminating manual feature extraction. This allows for direct feature extraction from images, ensuring high accuracy in results. Therefore, in our paper, we utilized the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis. As a result, this model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process for healthcare professionals.
- Abstract(参考訳): デジタル医療の時代には、医療画像は早期疾患検出の幅広い技術として機能し、毎日大量の画像が生成され、電子的な患者記録に保存されている。
X線アンギオグラフィーは、冠動脈疾患を迅速診断する最も一般的な方法の1つである。
最近のディープラーニングアルゴリズムの顕著な成果は、電子健康記録と診断画像の利用の増加と一致している。
豊富なデータ、高度なアルゴリズム、強力な計算能力を利用するディープニューラルネットワークは、画像の分析と解釈に非常に効果的である。
この文脈において、オブジェクト検出法は、特に畳み込みニューラルネットワーク(CNN)を通じて、手動の特徴抽出を排除し、医用画像解析を合理化することで、有望なアプローチとなっている。
これにより、画像から直接の特徴抽出が可能になり、結果の精度が向上する。
そこで本研究では,冠動脈狭窄の部位を正確に把握するために,X線アンギオグラフィー画像の物体検出法を応用した。
このモデルにより、医療従事者にとって重要かつ機密性の高い意思決定プロセスを支援することにより、狭窄箇所の自動的かつリアルタイムな検出が可能になる。
関連論文リスト
- A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning [0.0]
我々は,X線スキャンで骨骨折を検出するために,注意に基づく移動学習モデルを構築した。
本モデルでは, フラクチャー分類の90%以上を最先端の精度で達成する。
論文 参考訳(メタデータ) (2024-10-18T19:07:24Z) - Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
人工知能のサブセットであるディープラーニングの最近の進歩は、医療画像の分析に大きな革命をもたらした。
CNNは多次元医用画像から自律的に学習する能力に顕著な能力を示した。
これらのモデルは、病理学、放射線学、眼科、心臓学など、様々な医学分野に利用されてきた。
論文 参考訳(メタデータ) (2024-10-18T02:57:14Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
我々は、AIベースのアプローチ、特にCNN(Convolutional Neural Networks)の使用が、医療画像技術による疾患検出にどのように役立つかに焦点を当てる。
CNNは、生の入力画像から特徴を抽出できるため、画像解析の一般的な手法である。
論文 参考訳(メタデータ) (2023-06-03T09:05:35Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
本研究では,Deep Learning Pre-trained RepVGGアルゴリズムを用いて肺疾患の迅速検出を行う。
我々は、人の肺の患部の自動ハイライト検出に人工知能技術を適用している。
論文 参考訳(メタデータ) (2022-11-14T03:51:12Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
我々は、診断に関する情報がCNNに基づく画像分類モデルを改善する方法について分析する。
追加の患者履歴情報に基づいてトレーニングされたモデルが、情報のないトレーニングを受けたモデルよりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-10-28T11:47:15Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis [54.60796004113496]
医用画像を読む放射線科医の眼球運動は,DNNベースのコンピュータ支援診断システム(CAD)を訓練するための新たな指導形態であることが実証された。
画像を読んでいるときに、放射線科医の視線を記録します。
視線情報は処理され、アテンション一貫性モジュールを介してDNNの注意を監督するために使用される。
論文 参考訳(メタデータ) (2022-04-06T08:31:05Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。