論文の概要: On the Effectiveness of Retrieval, Alignment, and Replay in Manipulation
- arxiv url: http://arxiv.org/abs/2312.12345v1
- Date: Tue, 19 Dec 2023 17:17:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 14:38:03.545760
- Title: On the Effectiveness of Retrieval, Alignment, and Replay in Manipulation
- Title(参考訳): マニピュレーションにおける検索・アライメント・再生の有効性について
- Authors: Norman Di Palo and Edward Johns
- Abstract要約: 視覚的観察による模倣学習は、エンド・ツー・エンドの行動的クローン法に対処する場合、非効率であることが知られている。
本稿では、推論を3つのフェーズに分解する代替パラダイムについて検討する。
この分解は、前例のない学習効率と、クラス間およびクラス内における効果的な一般化をもたらすことを示す。
- 参考スコア(独自算出の注目度): 14.037205215634538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning with visual observations is notoriously inefficient when
addressed with end-to-end behavioural cloning methods. In this paper, we
explore an alternative paradigm which decomposes reasoning into three phases.
First, a retrieval phase, which informs the robot what it can do with an
object. Second, an alignment phase, which informs the robot where to interact
with the object. And third, a replay phase, which informs the robot how to
interact with the object. Through a series of real-world experiments on
everyday tasks, such as grasping, pouring, and inserting objects, we show that
this decomposition brings unprecedented learning efficiency, and effective
inter- and intra-class generalisation. Videos are available at
https://www.robot-learning.uk/retrieval-alignment-replay.
- Abstract(参考訳): 視覚観察による模倣学習は、エンド・ツー・エンドの行動クローン法で対処する場合に効率が悪いことで悪名高い。
本稿では,推論を3段階に分解する代替パラダイムを検討する。
まず、対象物に対して何ができるかをロボットに知らせる検索フェーズ。
第2のアライメントフェーズは、ロボットにオブジェクトとの相互作用の場所を知らせる。
そして3つ目は、ロボットにオブジェクトとのインタラクションの仕方を知らせる再生フェーズだ。
対象物をつかむ、注ぐ、挿入するといった日常的なタスクの一連の実世界実験を通じて、この分解は前例のない学習効率と効果的なクラス間およびクラス内一般化をもたらすことを示した。
ビデオはhttps://www.robot-learning.uk/retrieval-alignment-replayで閲覧できる。
関連論文リスト
- Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
そこで本研究では,RGB-Dビデオ録画による実演映像のワンショット模倣の問題に対処する。
本稿では,2段階のプロセスを提案する。第1段階では実演軌道をオフラインに抽出し,操作対象のセグメンテーションと,容器などの二次物体に対する相対運動を決定する。
オンライン軌道生成段階では、まず全ての物体を再検出し、次にデモ軌道を現在のシーンにワープし、ロボット上で実行します。
論文 参考訳(メタデータ) (2024-03-22T13:46:51Z) - One-shot Imitation Learning via Interaction Warping [32.5466340846254]
本稿では,1つの実演からSE(3)ロボット操作ポリシーを学習するためのインタラクションウォーピング法を提案する。
我々は、オブジェクトインスタンス間で点雲を整列させる技術である形状ワープを用いて、環境中の各オブジェクトの3Dメッシュを推論する。
3つのシミュレーションおよび実世界のオブジェクト再配置タスクで1ショットの模倣学習を成功させる。
論文 参考訳(メタデータ) (2023-06-21T17:26:11Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z) - Simultaneous Multi-View Object Recognition and Grasping in Open-Ended
Domains [0.0]
オープンなオブジェクト認識と把握を同時に行うために,メモリ容量を増強したディープラーニングアーキテクチャを提案する。
シミュレーションと実世界設定の両方において,本手法が未確認のオブジェクトを把握し,現場でのごくわずかな例を用いて,新たなオブジェクトカテゴリを迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2021-06-03T14:12:11Z) - Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single
Demonstration [8.57914821832517]
視覚的模倣学習のためのシンプルな新しい手法を導入し,新しいロボット操作タスクを1人の人間による実演から学習できるようにする。
提案手法は、状態推定問題として模倣学習をモデル化し、状態がエンドエフェクタのポーズとして定義される。
テスト時、エンドエフェクタは線形経路を通って推定状態に移動し、元のデモのエンドエフェクタ速度を単に再生する。
論文 参考訳(メタデータ) (2021-05-13T16:36:55Z) - Learning Object-Based State Estimators for Household Robots [11.055133590909097]
我々は高次元観測と仮説に基づいてオブジェクトベースのメモリシステムを構築する。
シミュレーション環境と実画像の両方において動的に変化するオブジェクトの記憶を維持するシステムの有効性を実証する。
論文 参考訳(メタデータ) (2020-11-06T04:18:52Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。