論文の概要: Towards Automatic Support of Software Model Evolution with Large
Language~Models
- arxiv url: http://arxiv.org/abs/2312.12404v1
- Date: Tue, 19 Dec 2023 18:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 14:25:41.121541
- Title: Towards Automatic Support of Software Model Evolution with Large
Language~Models
- Title(参考訳): 大規模言語モデルによるソフトウェアモデル進化の自動支援に向けて
- Authors: Christof Tinnes, Thomas Fuch{\ss}, Uwe Hohenstein, Sven Apel
- Abstract要約: 本稿では,大規模言語モデルを用いて,ソフトウェアシステムのモデル履歴における編集パターンの発見を行う手法を提案する。
大規模な言語モデルは、ソフトウェアモデルの進化をサポートするための有望な技術であることがわかった。
- 参考スコア(独自算出の注目度): 6.872484164111954
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modeling structure and behavior of software systems plays a crucial role, in
various areas of software engineering. As with other software engineering
artifacts, software models are subject to evolution. Supporting modelers in
evolving models by model completion facilities and providing high-level edit
operations such as frequently occurring editing patterns is still an open
problem. Recently, large language models (i.e., generative neural networks)
have garnered significant attention in various research areas, including
software engineering. In this paper, we explore the potential of large language
models in supporting the evolution of software models in software engineering.
We propose an approach that utilizes large language models for model completion
and discovering editing patterns in model histories of software systems.
Through controlled experiments using simulated model repositories, we conduct
an evaluation of the potential of large language models for these two tasks. We
have found that large language models are indeed a promising technology for
supporting software model evolution, and that it is worth investigating further
in the area of software model evolution.
- Abstract(参考訳): ソフトウェアシステムの構造と振舞いのモデリングは、ソフトウェア工学の様々な分野において重要な役割を果たす。
他のソフトウェアエンジニアリングアーティファクトと同様に、ソフトウェアモデルは進化の対象となる。
モデル補完機能によるモデル進化におけるモデラーのサポートや、頻繁に発生する編集パターンのような高度な編集操作は、まだ未解決の問題である。
近年,ソフトウェア工学を含む様々な研究分野において,大規模言語モデル(生成ニューラルネットワーク)が注目されている。
本稿では,ソフトウェア工学におけるソフトウェアモデルの発展を支援する大規模言語モデルの可能性を考察する。
本稿では,大規模言語モデルを用いて,ソフトウェアシステムのモデル履歴における編集パターンの発見を行う手法を提案する。
シミュレーションモデルレポジトリを用いた制御実験により,これらの2つのタスクに対する大規模言語モデルの可能性を評価する。
大規模言語モデルは、ソフトウェアモデルの進化をサポートする上で有望な技術であると同時に、ソフトウェアモデルの進化の分野でさらに調査する価値があることが分かりました。
関連論文リスト
- Software Model Evolution with Large Language Models: Experiments on Simulated, Public, and Industrial Datasets [6.585732390922304]
RAMCを用いたモデル補完のための大規模言語モデルの可能性を評価する。
大規模な言語モデルは、ソフトウェアモデルの進化をサポートするための有望な技術であることがわかった。
大規模言語モデルの一般的な推論能力は、ほとんど、うるさい、あるいは全く例のない概念を扱う際に特に有用である。
論文 参考訳(メタデータ) (2024-06-25T15:43:20Z) - Knowledge Fusion By Evolving Weights of Language Models [5.354527640064584]
本稿では,複数のモデルを統一モデルに統合するアプローチについて検討する。
本稿では進化的アルゴリズムに触発されたEvolverという知識融合手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T02:12:34Z) - What matters when building vision-language models? [52.8539131958858]
我々は、80億のパラメータを持つ効率的な基礎的視覚言語モデルであるIdefics2を開発した。
Idefics2は、様々なマルチモーダルベンチマークで、そのサイズカテゴリ内で最先端のパフォーマンスを達成する。
トレーニング用に作成されたデータセットとともに、モデル(ベース、指示、チャット)をリリースします。
論文 参考訳(メタデータ) (2024-05-03T17:00:00Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Qwen Technical Report [132.54304067403922]
当社の大規模言語モデルシリーズの最初のインストールであるQwenを紹介します。
Qwenはトレーニング済みの言語モデルの基本であり、Qwen-Chatは人間のアライメント技術で微調整されたチャットモデルである。
また、コーディング特化モデルであるCode-QwenとCode-Qwen-Chatも開発し、数学に焦点を当てたMath-Qwen-Chatも開発しました。
論文 参考訳(メタデータ) (2023-09-28T17:07:49Z) - Opportunities for Large Language Models and Discourse in Engineering
Design [0.0]
談話はエンジニアリング設計プロセスの中核と見なされるべきであり、したがってデジタルアーティファクトで表現されるべきである、と我々は主張する。
シミュレーション,実験,トポロジ最適化,その他のプロセスステップを,機械操作可能な,談話中心の設計プロセスに統合する方法について述べる。
論文 参考訳(メタデータ) (2023-06-15T14:46:44Z) - What Language Model to Train if You Have One Million GPU Hours? [54.32062236748831]
モデリングの実践の違いがゼロショット一般化に与える影響について検討する。
また、多言語モデルの性能と、英語のみとの比較についても検討する。
私たちのモデルとコードは、https://huggingface.co/bigscience.comでオープンソース化されています。
論文 参考訳(メタデータ) (2022-10-27T13:43:27Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
モデルは、ソフトウェア工学(SE)と人工知能(AI)のコミュニティで使われている。
主な焦点はIoT(Internet of Things)とCPS(Smart Cyber-Physical Systems)のユースケースである。
論文 参考訳(メタデータ) (2021-07-06T15:50:50Z) - ModelPS: An Interactive and Collaborative Platform for Editing
Pre-trained Models at Scale [30.333660470820604]
共同DNNモデル編集とインテリジェントモデルサービングを可能にするローコードソリューション「ModelPS」を提案・開発します。
ModelPSソリューションは、1)DNNモデルを低コードで画像的に共有および編集するためのユーザフレンドリーなWebインターフェース、2)特定のデプロイメント要件や制約に対するモデル編集設定のカスタマイズを支援するバックエンドのモデルジェニーエンジンの2つのトランスフォーメーション機能を具現化します。
論文 参考訳(メタデータ) (2021-05-18T04:51:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。