論文の概要: H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer
- arxiv url: http://arxiv.org/abs/2312.12489v1
- Date: Tue, 19 Dec 2023 17:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 18:15:14.165001
- Title: H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer
- Title(参考訳): Hアンサンブル:信頼度の高いFew-Shotマルチソースフリートランスファーへの情報理論的アプローチ
- Authors: Yanru Wu, Jianning Wang, Weida Wang, Yang Li
- Abstract要約: 本稿では,対象タスクに対するソースモデルの最適線形結合を学習するHアンサンブル(H-ensemble)というフレームワークを提案する。
H-アンサンブルは,1)少数の目標タスクに対する新しいMSF設定への適応性,2)理論的信頼性,3)解釈や適応が容易な軽量構造を特徴とする。
我々は,Hアンサンブルが最適なタスクアンサンブルを学習し,先行技術より優れていることを示す。
- 参考スコア(独自算出の注目度): 4.328706834250445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-source transfer learning is an effective solution to data scarcity by
utilizing multiple source tasks for the learning of the target task. However,
access to source data and model details is limited in the era of commercial
models, giving rise to the setting of multi-source-free (MSF) transfer learning
that aims to leverage source domain knowledge without such access. As a newly
defined problem paradigm, MSF transfer learning remains largely underexplored
and not clearly formulated. In this work, we adopt an information theoretic
perspective on it and propose a framework named H-ensemble, which dynamically
learns the optimal linear combination, or ensemble, of source models for the
target task, using a generalization of maximal correlation regression. The
ensemble weights are optimized by maximizing an information theoretic metric
for transferability. Compared to previous works, H-ensemble is characterized
by: 1) its adaptability to a novel and realistic MSF setting for few-shot
target tasks, 2) theoretical reliability, 3) a lightweight structure easy to
interpret and adapt. Our method is empirically validated by ablation studies,
along with extensive comparative analysis with other task ensemble and transfer
learning methods. We show that the H-ensemble can successfully learn the
optimal task ensemble, as well as outperform prior arts.
- Abstract(参考訳): マルチソース転送学習は、対象タスクの学習に複数のソースタスクを使用することで、データの不足に対する効果的な解決策となる。
しかし、ソースデータとモデルの詳細へのアクセスは商用モデルの時代に制限されており、そのようなアクセスなしでソースドメインの知識を活用することを目的としたマルチソースフリー(msf)トランスファーラーニングが設定されている。
新たに定義された問題パラダイムとして、MSF転送学習は未熟であり、明確に定式化されていない。
本研究では,H-アンサンブル(H-enmble)というフレームワークを提案し,最大相関回帰の一般化を用いて,対象タスクに対するソースモデルの最適線形結合(あるいはアンサンブル)を動的に学習する。
アンサンブル重みは、転送可能性のための情報理論メトリックを最大化することによって最適化される。
以前の作品と比較して、Hアンサンブルの特徴は以下のとおりである。
1) ターゲットタスクの新規かつ現実的なmsf設定への適応性。
2)理論上の信頼性。
3) 解釈や適応が容易な軽量な構造。
本手法はアブレーション研究によって実証的に検証され,他のタスクアンサンブルや伝達学習法との比較も行った。
我々は,Hアンサンブルが最適なタスクアンサンブルを学習し,先行技術より優れていることを示す。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
フェデレートラーニング(FL)は、複数のクライアント間で協調学習を可能にする、有望なアプローチとして登場した。
本稿では,ドメイン横断シナリオの課題に対処するための新しいFLアルゴリズムであるUNIを提案する。
この結果から,UNIはモデル精度と通信効率の両面において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-09-16T11:30:29Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
HASTEは、ターゲットデータのより厳しいサブセットのみを用いて、ソースモデルの特定のターゲットタスクへの転送可能性を推定する新しい戦略である。
HASTEは既存の転送可能性測定値と組み合わせて信頼性を向上させることができることを示す。
複数のソースモデルアーキテクチャ、ターゲットデータセット、トランスファー学習タスクにまたがる実験結果から、HASTEの修正されたメトリクスは、一貫して、あるいは、アートトランスファービリティーメトリクスの状態と同等であることが示された。
論文 参考訳(メタデータ) (2023-01-17T14:50:18Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Simultaneously Evolving Deep Reinforcement Learning Models using
Multifactorial Optimization [18.703421169342796]
この研究は、関連する強化学習タスクの解決に向けて、複数のDQLモデルを同時に進化させることのできるフレームワークを提案する。
フレームワークの性能を評価するために、徹底的な実験を行い、議論する。
論文 参考訳(メタデータ) (2020-02-25T10:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。