Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor
- URL: http://arxiv.org/abs/2312.12613v1
- Date: Tue, 19 Dec 2023 21:36:07 GMT
- Title: Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor
- Authors: Ra\'ul A. Brice\~no, Robert G. Edwards, Miller Eaton, Carlos
Gonz\'alez-Arciniegas, Olivier Pfister, George Siopsis
- Abstract summary: We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, applications of quantum simulation have been developed to
study properties of strongly interacting theories. This has been driven by two
factors: on the one hand, needs from theorists to have access to physical
observables that are prohibitively difficult to study using classical
computing; on the other hand, quantum hardware becoming increasingly reliable
and scalable to larger systems. In this work, we discuss the feasibility of
using quantum optical simulation for studying scattering observables that are
presently inaccessible via lattice QCD and are at the core of the experimental
program at Jefferson Lab, the future Electron-Ion Collider, and other
accelerator facilities. We show that recent progress in measurement-based
photonic quantum computing can be leveraged to provide deterministic generation
of required exotic gates and implementation in a single photonic quantum
processor.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - The Coming Decades of Quantum Simulation [0.0]
We focus on various shades of quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital quantum simulators and quantum annealers.
There is a clear need and quest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and superposition states.
This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications.
arXiv Detail & Related papers (2022-04-19T14:02:32Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.