MetaSegNet: Metadata-collaborative Vision-Language Representation Learning for Semantic Segmentation of Remote Sensing Images
- URL: http://arxiv.org/abs/2312.12735v3
- Date: Wed, 30 Oct 2024 01:36:53 GMT
- Title: MetaSegNet: Metadata-collaborative Vision-Language Representation Learning for Semantic Segmentation of Remote Sensing Images
- Authors: Libo Wang, Sijun Dong, Ying Chen, Xiaoliang Meng, Shenghui Fang, Songlin Fei,
- Abstract summary: We propose a novel metadata-collaborative segmentation network (MetaSegNet) for semantic segmentation of remote sensing images.
Unlike the common model structure that only uses unimodal visual data, we extract the key characteristic from freely available remote sensing image metadata.
We construct an image encoder, a text encoder, and a crossmodal attention fusion subnetwork to extract the image and text feature.
- Score: 7.0622873873577054
- License:
- Abstract: Semantic segmentation of remote sensing images plays a vital role in a wide range of Earth Observation applications, such as land use land cover mapping, environment monitoring, and sustainable development. Driven by rapid developments in artificial intelligence, deep learning (DL) has emerged as the mainstream for semantic segmentation and has achieved many breakthroughs in the field of remote sensing. However, most DL-based methods focus on unimodal visual data while ignoring rich multimodal information involved in the real world. Non-visual data, such as text, can gather extra knowledge from the real world, which can strengthen the interpretability, reliability, and generalization of visual models. Inspired by this, we propose a novel metadata-collaborative segmentation network (MetaSegNet) that applies vision-language representation learning for semantic segmentation of remote sensing images. Unlike the common model structure that only uses unimodal visual data, we extract the key characteristic (e.g. the climate zone) from freely available remote sensing image metadata and transfer it into geographic text prompts via the generic ChatGPT. Then, we construct an image encoder, a text encoder, and a crossmodal attention fusion subnetwork to extract the image and text feature and apply image-text interaction. Benefiting from such a design, the proposed MetaSegNet not only demonstrates superior generalization in zero-shot testing but also achieves competitive accuracy with the state-of-the-art semantic segmentation methods on the large-scale OpenEarthMap dataset (70.4% mIoU) and the Potsdam dataset (93.3% mean F1 score) as well as the LoveDA dataset (52.0% mIoU).
Related papers
- Exploring Fine-Grained Image-Text Alignment for Referring Remote Sensing Image Segmentation [27.95875467352853]
We propose a new referring remote sensing image segmentation method, FIANet, that fully exploits the visual and linguistic representations.
The proposed fine-grained image-text alignment module (FIAM) would simultaneously leverage the features of the input image and the corresponding texts.
We evaluate the effectiveness of the proposed methods on two public referring remote sensing datasets including RefSegRS and RRSIS-D.
arXiv Detail & Related papers (2024-09-20T16:45:32Z) - MSSPlace: Multi-Sensor Place Recognition with Visual and Text Semantics [41.94295877935867]
We study the impact of leveraging a multi-camera setup and integrating diverse data sources for multimodal place recognition.
Our proposed method named MSSPlace utilizes images from multiple cameras, LiDAR point clouds, semantic segmentation masks, and text annotations to generate comprehensive place descriptors.
arXiv Detail & Related papers (2024-07-22T14:24:56Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - SkyScript: A Large and Semantically Diverse Vision-Language Dataset for
Remote Sensing [14.79627534702196]
We construct a vision-language dataset for remote sensing images, comprising 2.6 million image-text pairs covering 29K distinct semantic tags.
With continual pre-training on this dataset, we obtain a VLM that surpasses baseline models with a 6.2% average accuracy gain in zero-shot scene classification.
It also demonstrates the ability of zero-shot transfer for fine-grained object attribute classification and cross-modal retrieval.
arXiv Detail & Related papers (2023-12-20T09:19:48Z) - Remote Sensing Vision-Language Foundation Models without Annotations via
Ground Remote Alignment [61.769441954135246]
We introduce a method to train vision-language models for remote-sensing images without using any textual annotations.
Our key insight is to use co-located internet imagery taken on the ground as an intermediary for connecting remote-sensing images and language.
arXiv Detail & Related papers (2023-12-12T03:39:07Z) - RRSIS: Referring Remote Sensing Image Segmentation [25.538406069768662]
Localizing desired objects from remote sensing images is of great use in practical applications.
Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been extensively studied in natural images.
We introduce referring remote sensing image segmentation (RRSIS) to fill in this gap and make some insightful explorations.
arXiv Detail & Related papers (2023-06-14T16:40:19Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
We propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval.
First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively.
Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module.
Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment.
arXiv Detail & Related papers (2022-12-16T05:08:52Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.