FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise
- URL: http://arxiv.org/abs/2312.12737v2
- Date: Sat, 05 Oct 2024 13:14:14 GMT
- Title: FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise
- Authors: Rebecca M. Neeser, Bruno Correia, Philippe Schwaller,
- Abstract summary: This work introduces the Focused Synthesizability score(FSscore), which uses machine learning to rank structures based on their relative ease of synthesis.
The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.
- Score: 0.7045000393120925
- License:
- Abstract: Determining whether a molecule can be synthesized is crucial in chemistry and drug discovery, as it guides experimental prioritization and molecule ranking in de novo design tasks. Existing scoring approaches to assess synthetic feasibility struggle to extrapolate to new chemical spaces or fail to discriminate based on subtle differences such as chirality. This work addresses these limitations by introducing the Focused Synthesizability score~(FSscore), which uses machine learning to rank structures based on their relative ease of synthesis. First, a baseline trained on an extensive set of reactant-product pairs is established, which is then refined with expert human feedback tailored to specific chemical spaces. This targeted fine-tuning improves performance on these chemical scopes, enabling more accurate differentiation between molecules that are hard and easy to synthesize. The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.
Related papers
- SDDBench: A Benchmark for Synthesizable Drug Design [31.739548311094843]
We propose a new, data-driven metric to evaluate molecule synthesizability.
Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score.
To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models.
arXiv Detail & Related papers (2024-11-13T03:08:33Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes [33.293741487835824]
Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines.
Current approaches, however, often neglect the critical role of multiple molecule graph interaction in understanding chemical reactions.
This study introduces PRESTO, a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations.
arXiv Detail & Related papers (2024-06-19T03:59:46Z) - Leap: molecular synthesisability scoring with intermediates [0.0]
A common approach in drug discovery involves exploring the chemical space surrounding synthetically-accessible intermediates.
Leap is a GPT-2 model trained on the depth, or longest linear path, of predicted synthesis routes.
We show that Leap surpasses all other scoring methods by at least 5% on AUC score when identifying synthesisable molecules.
arXiv Detail & Related papers (2024-03-14T11:53:35Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
We introduce a novel approach for the active learning over the chemical spaces based on hypothesis learning.
We construct the hypotheses on the possible relationships between structures and functionalities of interest based on a small subset of data.
This approach combines the elements from the symbolic regression methods such as SISSO and active learning into a single framework.
arXiv Detail & Related papers (2023-01-06T14:22:43Z) - Differentiable Scaffolding Tree for Molecular Optimization [47.447362691543304]
We propose differentiable scaffolding tree (DST) that utilizes a learned knowledge network to convert discrete chemical structures to locally differentiable ones.
Our empirical studies show the gradient-based molecular optimizations are both effective and sample efficient.
arXiv Detail & Related papers (2021-09-22T01:16:22Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
We introduce federated heterogeneous molecular learning to address these challenges.
Federated learning allows end-users to build a global model collaboratively while preserving the training data distributed over isolated clients.
FedChem should enable a new type of collaboration for improving AI in chemistry that mitigates concerns about valuable chemical data.
arXiv Detail & Related papers (2021-09-15T12:49:13Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.