SDDBench: A Benchmark for Synthesizable Drug Design
- URL: http://arxiv.org/abs/2411.08306v1
- Date: Wed, 13 Nov 2024 03:08:33 GMT
- Title: SDDBench: A Benchmark for Synthesizable Drug Design
- Authors: Songtao Liu, Zhengkai Tu, Hanjun Dai, Peng Liu,
- Abstract summary: We propose a new, data-driven metric to evaluate molecule synthesizability.
Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score.
To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models.
- Score: 31.739548311094843
- License:
- Abstract: A significant challenge in wet lab experiments with current drug design generative models is the trade-off between pharmacological properties and synthesizability. Molecules predicted to have highly desirable properties are often difficult to synthesize, while those that are easily synthesizable tend to exhibit less favorable properties. As a result, evaluating the synthesizability of molecules in general drug design scenarios remains a significant challenge in the field of drug discovery. The commonly used synthetic accessibility (SA) score aims to evaluate the ease of synthesizing generated molecules, but it falls short of guaranteeing that synthetic routes can actually be found. Inspired by recent advances in top-down synthetic route generation, we propose a new, data-driven metric to evaluate molecule synthesizability. Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score. This novel metric leverages the synergistic duality between retrosynthetic planners and reaction predictors, both of which are trained on extensive reaction datasets. To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models. Code is available at https://github.com/SongtaoLiu0823/SDDBench.
Related papers
- SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design [1.3927943269211591]
This paper addresses the gap between in silico generative approaches and practical in vitro methodologies.
We introduce SynthFormer, a novel ML model that utilizes a 3D equivariant encoder for pharmacophores to generate fully synthesizable molecules.
Our contributions include a new methodology for efficient chemical space exploration using 3D information, a novel architecture called Synthformer for translating 3D pharmacophore representations into molecules, and a meaningful embedding space that organizes reagents for drug discovery optimization.
arXiv Detail & Related papers (2024-10-03T17:38:46Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - Synthetic Data from Diffusion Models Improve Drug Discovery Prediction [1.3686993145787065]
Data sparsity makes data curation difficult for researchers looking to answer key research questions.
We propose a novel diffusion GNN model Syngand capable of generating ligand and pharmacokinetic data end-to-end.
We show initial promising results on the efficacy of the Syngand-generated synthetic target property data on downstream regression tasks with AqSolDB, LD50, and hERG central.
arXiv Detail & Related papers (2024-05-06T19:09:37Z) - Leap: molecular synthesisability scoring with intermediates [0.0]
A common approach in drug discovery involves exploring the chemical space surrounding synthetically-accessible intermediates.
Leap is a GPT-2 model trained on the depth, or longest linear path, of predicted synthesis routes.
We show that Leap surpasses all other scoring methods by at least 5% on AUC score when identifying synthesisable molecules.
arXiv Detail & Related papers (2024-03-14T11:53:35Z) - FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise [0.7045000393120925]
This work introduces the Focused Synthesizability score(FSscore), which uses machine learning to rank structures based on their relative ease of synthesis.
The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.
arXiv Detail & Related papers (2023-12-20T03:18:56Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
We propose a novel end-to-end graph generation model for retrosynthesis prediction.
It sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants.
Experiments on a benchmark dataset show that the proposed model significantly outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2022-09-27T06:29:35Z) - RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
Novo Drug Design [75.14290780116002]
We train deep graph neural networks to approximate the outputs of a retrosynthesis planning software.
Our approach finds molecules predicted to be more likely to be antibiotics while maintaining good drug-like properties and being easily synthesizable.
arXiv Detail & Related papers (2020-11-25T22:04:16Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.