Learning Exhaustive Correlation for Spectral Super-Resolution: Where Spatial-Spectral Attention Meets Linear Dependence
- URL: http://arxiv.org/abs/2312.12833v2
- Date: Mon, 18 Mar 2024 09:02:20 GMT
- Title: Learning Exhaustive Correlation for Spectral Super-Resolution: Where Spatial-Spectral Attention Meets Linear Dependence
- Authors: Hongyuan Wang, Lizhi Wang, Jiang Xu, Chang Chen, Xue Hu, Fenglong Song, Youliang Yan,
- Abstract summary: Spectral super-resolution aims to recover hyperspectral image (HSI) from easily obtainable RGB image.
Two types of bottlenecks in existing Transformers limit performance improvement and practical applications.
We propose a novel Exhaustive Correlation Transformer (ECT) for spectral super-resolution.
- Score: 26.1694389791047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral super-resolution that aims to recover hyperspectral image (HSI) from easily obtainable RGB image has drawn increasing interest in the field of computational photography. The crucial aspect of spectral super-resolution lies in exploiting the correlation within HSIs. However, two types of bottlenecks in existing Transformers limit performance improvement and practical applications. First, existing Transformers often separately emphasize either spatial-wise or spectral-wise correlation, disrupting the 3D features of HSI and hindering the exploitation of unified spatial-spectral correlation. Second, existing self-attention mechanism always establishes full-rank correlation matrix by learning the correlation between pairs of tokens, leading to its inability to describe linear dependence widely existing in HSI among multiple tokens. To address these issues, we propose a novel Exhaustive Correlation Transformer (ECT) for spectral super-resolution. First, we propose a Spectral-wise Discontinuous 3D (SD3D) splitting strategy, which models unified spatial-spectral correlation by integrating spatial-wise continuous splitting strategy and spectral-wise discontinuous splitting strategy. Second, we propose a Dynamic Low-Rank Mapping (DLRM) model, which captures linear dependence among multiple tokens through a dynamically calculated low-rank dependence map. By integrating unified spatial-spectral attention and linear dependence, our ECT can model exhaustive correlation within HSI. The experimental results on both simulated and real data indicate that our method achieves state-of-the-art performance. Codes and pretrained models will be available later.
Related papers
- SpectralMamba: Efficient Mamba for Hyperspectral Image Classification [39.18999103115206]
Recurrent neural networks and Transformers have dominated most applications in hyperspectral (HS) imaging.
We propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification.
We show that SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
arXiv Detail & Related papers (2024-04-12T14:12:03Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Hybrid Spectral Denoising Transformer with Guided Attention [34.34075175179669]
We present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising.
Our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead.
arXiv Detail & Related papers (2023-03-16T02:24:31Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy.
In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM)
Experiment results on two standard cross-spectral person re-identification datasets, RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2023-02-02T05:24:50Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - 3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising [25.641742612227148]
3D convolution is utilized to extract structural-spectral correlation in an HS image.
alternating global directional structure is introduced to eliminate causal dependency.
experiments on HSI denoising demonstrate significant improvement over state-of-the-arts computation.
arXiv Detail & Related papers (2020-03-10T06:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.