Controlled phase gate in exchange coupled quantum dots affected by
quasistatic charge noise
- URL: http://arxiv.org/abs/2312.12892v1
- Date: Wed, 20 Dec 2023 10:05:56 GMT
- Title: Controlled phase gate in exchange coupled quantum dots affected by
quasistatic charge noise
- Authors: Yinan Fang
- Abstract summary: We study the influence of quasistatic noise in quantum dot detuning on the controlled phase gate for spin qubits.
We show that an exponential decay of the sequential fidelity is still valid for the weak noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Charge noise has been one of the main issues in realizing high fidelity
two-qubit quantum gates in semiconductor based qubits. Here, we study the
influence of quasistatic noise in quantum dot detuning on the controlled phase
gate for spin qubits that defined on a double quantum dot. Analytical
expressions for the noise averaged Hamiltonian, exchange interaction, as well
as the gate fidelity are derived for weak noise covering experimental relevant
regime. We also perform interleaved two-qubit randomized benchmarking analysis
for the controlled phase gate and show that an exponential decay of the
sequential fidelity is still valid for the weak noise.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
Quantum decoherence due to imperfect manipulation of quantum devices is a key issue in the noisy intermediate-scale quantum (NISQ) era.
Standard analyses in quantum information and quantum computation use error rates to parameterize quantum noise channels.
We propose to characterize the decoherence effect of a noise channel by the physical implementability of its inverse.
arXiv Detail & Related papers (2022-07-04T13:35:17Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.